offline-recognizer-canary-impl.h
8.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// sherpa-onnx/csrc/offline-recognizer-canary-impl.h
//
// Copyright (c) 2025 Xiaomi Corporation
#ifndef SHERPA_ONNX_CSRC_OFFLINE_RECOGNIZER_CANARY_IMPL_H_
#define SHERPA_ONNX_CSRC_OFFLINE_RECOGNIZER_CANARY_IMPL_H_
#include <algorithm>
#include <ios>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/offline-canary-model.h"
#include "sherpa-onnx/csrc/offline-recognizer-impl.h"
#include "sherpa-onnx/csrc/offline-recognizer.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/symbol-table.h"
#include "sherpa-onnx/csrc/utils.h"
namespace sherpa_onnx {
class OfflineRecognizerCanaryImpl : public OfflineRecognizerImpl {
public:
explicit OfflineRecognizerCanaryImpl(const OfflineRecognizerConfig &config)
: OfflineRecognizerImpl(config),
config_(config),
symbol_table_(config_.model_config.tokens),
model_(std::make_unique<OfflineCanaryModel>(config_.model_config)) {
PostInit();
}
template <typename Manager>
explicit OfflineRecognizerCanaryImpl(Manager *mgr,
const OfflineRecognizerConfig &config)
: OfflineRecognizerImpl(mgr, config),
config_(config),
symbol_table_(mgr, config_.model_config.tokens),
model_(
std::make_unique<OfflineCanaryModel>(mgr, config_.model_config)) {
PostInit();
}
std::unique_ptr<OfflineStream> CreateStream() const override {
return std::make_unique<OfflineStream>(config_.feat_config);
}
void DecodeStreams(OfflineStream **ss, int32_t n) const override {
for (int32_t i = 0; i < n; ++i) {
DecodeStream(ss[i]);
}
}
void DecodeStream(OfflineStream *s) const {
auto meta = model_->GetModelMetadata();
auto enc_out = RunEncoder(s);
Ort::Value enc_states = std::move(enc_out[0]);
Ort::Value enc_mask = std::move(enc_out[2]);
// enc_out[1] is discarded
std::vector<int32_t> decoder_input = GetInitialDecoderInput();
auto decoder_states = model_->GetInitialDecoderStates();
Ort::Value logits{nullptr};
for (int32_t i = 0; i < decoder_input.size(); ++i) {
std::tie(logits, decoder_states) =
RunDecoder(decoder_input[i], i, std::move(decoder_states),
View(&enc_states), View(&enc_mask));
}
int32_t max_token_id = GetMaxTokenId(&logits);
int32_t eos = symbol_table_["<|endoftext|>"];
int32_t num_feature_frames =
enc_states.GetTensorTypeAndShapeInfo().GetShape()[1] *
meta.subsampling_factor;
std::vector<int32_t> tokens = {max_token_id};
// Assume 30 tokens per second. It is to avoid the following for loop
// running indefinitely.
int32_t num_tokens =
static_cast<int32_t>(num_feature_frames / 100.0 * 30) + 1;
for (int32_t i = 1; i <= num_tokens; ++i) {
if (tokens.back() == eos) {
break;
}
std::tie(logits, decoder_states) =
RunDecoder(tokens.back(), i, std::move(decoder_states),
View(&enc_states), View(&enc_mask));
tokens.push_back(GetMaxTokenId(&logits));
}
// remove the last eos token
tokens.pop_back();
auto r = Convert(tokens);
r.text = ApplyInverseTextNormalization(std::move(r.text));
r.text = ApplyHomophoneReplacer(std::move(r.text));
s->SetResult(r);
}
OfflineRecognizerConfig GetConfig() const override { return config_; }
void SetConfig(const OfflineRecognizerConfig &config) override {
config_.model_config.canary.src_lang = config.model_config.canary.src_lang;
config_.model_config.canary.tgt_lang = config.model_config.canary.tgt_lang;
config_.model_config.canary.use_pnc = config.model_config.canary.use_pnc;
// we don't change the config_ in the base class
}
private:
OfflineRecognitionResult Convert(const std::vector<int32_t> &tokens) const {
OfflineRecognitionResult r;
r.tokens.reserve(tokens.size());
std::string text;
for (auto i : tokens) {
if (!symbol_table_.Contains(i)) {
continue;
}
const auto &s = symbol_table_[i];
text += s;
r.tokens.push_back(s);
}
r.text = std::move(text);
return r;
}
int32_t GetMaxTokenId(Ort::Value *logits) const {
// logits is of shape (1, 1, vocab_size)
auto meta = model_->GetModelMetadata();
const float *p_logits = logits->GetTensorData<float>();
int32_t max_token_id = static_cast<int32_t>(std::distance(
p_logits, std::max_element(p_logits, p_logits + meta.vocab_size)));
return max_token_id;
}
std::vector<Ort::Value> RunEncoder(OfflineStream *s) const {
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
int32_t feat_dim = config_.feat_config.feature_dim;
std::vector<float> f = s->GetFrames();
int32_t num_frames = f.size() / feat_dim;
std::array<int64_t, 3> shape = {1, num_frames, feat_dim};
Ort::Value x = Ort::Value::CreateTensor(memory_info, f.data(), f.size(),
shape.data(), shape.size());
int64_t x_length_scalar = num_frames;
std::array<int64_t, 1> x_length_shape = {1};
Ort::Value x_length =
Ort::Value::CreateTensor(memory_info, &x_length_scalar, 1,
x_length_shape.data(), x_length_shape.size());
return model_->ForwardEncoder(std::move(x), std::move(x_length));
}
std::pair<Ort::Value, std::vector<Ort::Value>> RunDecoder(
int32_t token, int32_t pos, std::vector<Ort::Value> decoder_states,
Ort::Value enc_states, Ort::Value enc_mask) const {
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 2> shape = {1, 2};
std::array<int32_t, 2> _decoder_input = {token, pos};
Ort::Value decoder_input = Ort::Value::CreateTensor(
memory_info, _decoder_input.data(), _decoder_input.size(), shape.data(),
shape.size());
return model_->ForwardDecoder(std::move(decoder_input),
std::move(decoder_states),
std::move(enc_states), std::move(enc_mask));
}
// see
// https://github.com/k2-fsa/sherpa-onnx/blob/master/scripts/nemo/canary/test_180m_flash.py#L242
std::vector<int32_t> GetInitialDecoderInput() const {
auto canary_config = config_.model_config.canary;
const auto &meta = model_->GetModelMetadata();
std::vector<int32_t> decoder_input(9);
decoder_input[0] = symbol_table_["<|startofcontext|>"];
decoder_input[1] = symbol_table_["<|startoftranscript|>"];
decoder_input[2] = symbol_table_["<|emo:undefined|>"];
if (canary_config.src_lang.empty() ||
!meta.lang2id.count(canary_config.src_lang)) {
decoder_input[3] = meta.lang2id.at("en");
} else {
decoder_input[3] = meta.lang2id.at(canary_config.src_lang);
}
if (canary_config.tgt_lang.empty() ||
!meta.lang2id.count(canary_config.tgt_lang)) {
decoder_input[4] = meta.lang2id.at("en");
} else {
decoder_input[4] = meta.lang2id.at(canary_config.tgt_lang);
}
if (canary_config.use_pnc) {
decoder_input[5] = symbol_table_["<|pnc|>"];
} else {
decoder_input[5] = symbol_table_["<|nopnc|>"];
}
decoder_input[6] = symbol_table_["<|noitn|>"];
decoder_input[7] = symbol_table_["<|notimestamp|>"];
decoder_input[8] = symbol_table_["<|nodiarize|>"];
return decoder_input;
}
private:
void PostInit() {
auto &meta = model_->GetModelMetadata();
config_.feat_config.feature_dim = meta.feat_dim;
config_.feat_config.nemo_normalize_type = meta.normalize_type;
config_.feat_config.dither = 0;
config_.feat_config.remove_dc_offset = false;
config_.feat_config.low_freq = 0;
config_.feat_config.window_type = "hann";
config_.feat_config.is_librosa = true;
meta.lang2id["en"] = symbol_table_["<|en|>"];
meta.lang2id["es"] = symbol_table_["<|es|>"];
meta.lang2id["de"] = symbol_table_["<|de|>"];
meta.lang2id["fr"] = symbol_table_["<|fr|>"];
if (symbol_table_.NumSymbols() != meta.vocab_size) {
SHERPA_ONNX_LOGE("number of lines in tokens.txt %d != %d (vocab_size)",
symbol_table_.NumSymbols(), meta.vocab_size);
SHERPA_ONNX_EXIT(-1);
}
}
private:
OfflineRecognizerConfig config_;
SymbolTable symbol_table_;
std::unique_ptr<OfflineCanaryModel> model_;
};
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_OFFLINE_RECOGNIZER_CANARY_IMPL_H_