export-onnx-en.py
6.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#!/usr/bin/env python3
# This model exports the English-only TTS model.
# It has 5 speakers.
# {'EN-US': 0, 'EN-BR': 1, 'EN_INDIA': 2, 'EN-AU': 3, 'EN-Default': 4}
from typing import Any, Dict
import onnx
import torch
from melo.api import TTS
from melo.text import language_id_map, language_tone_start_map
from melo.text.chinese import pinyin_to_symbol_map
from melo.text.english import eng_dict, refine_syllables
from pypinyin import Style, lazy_pinyin, phrases_dict, pinyin_dict
def generate_tokens(symbol_list):
with open("tokens.txt", "w", encoding="utf-8") as f:
for i, s in enumerate(symbol_list):
f.write(f"{s} {i}\n")
def add_new_english_words(lexicon):
"""
Args:
lexicon:
Please modify it in-place.
"""
# Please have a look at
# https://github.com/myshell-ai/MeloTTS/blob/main/melo/text/cmudict.rep
# We give several examples below about how to add new words
# Example 1. Add a new word kaldi
# It does not contain the word kaldi in cmudict.rep
# so if we add the following line to cmudict.rep
#
# KALDI K AH0 - L D IH0
#
# then we need to change the lexicon like below
lexicon["kaldi"] = [["K", "AH0"], ["L", "D", "IH0"]]
#
# K AH0 and L D IH0 are separated by a dash "-", so
# ["K", "AH0"] is a in list and ["L", "D", "IH0"] is in a separate list
# Note: Either kaldi or KALDI is fine. You can use either lowercase or
# uppercase or both
# Example 2. Add a new word SF
#
# If we add the following line to cmudict.rep
#
# SF EH1 S - EH1 F
#
# to cmudict.rep, then we need to change the lexicon like below:
lexicon["SF"] = [["EH1", "S"], ["EH1", "F"]]
# Please add your new words here
# No need to return lexicon since it is changed in-place
def generate_lexicon():
add_new_english_words(eng_dict)
with open("lexicon.txt", "w", encoding="utf-8") as f:
for word in eng_dict:
phones, tones = refine_syllables(eng_dict[word])
tones = [t + language_tone_start_map["EN"] for t in tones]
tones = [str(t) for t in tones]
phones = " ".join(phones)
tones = " ".join(tones)
f.write(f"{word.lower()} {phones} {tones}\n")
def add_meta_data(filename: str, meta_data: Dict[str, Any]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
while len(model.metadata_props):
model.metadata_props.pop()
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)
onnx.save(model, filename)
class ModelWrapper(torch.nn.Module):
def __init__(self, model: "SynthesizerTrn"):
super().__init__()
self.model = model
self.lang_id = language_id_map[model.language]
def forward(
self,
x,
x_lengths,
tones,
sid,
noise_scale,
length_scale,
noise_scale_w,
max_len=None,
):
"""
Args:
x: A 1-D array of dtype np.int64. Its shape is (token_numbers,)
tones: A 1-D array of dtype np.int64. Its shape is (token_numbers,)
lang_id: A 1-D array of dtype np.int64. Its shape is (token_numbers,)
sid: an integer
"""
bert = torch.zeros(x.shape[0], 1024, x.shape[1], dtype=torch.float32)
ja_bert = torch.zeros(x.shape[0], 768, x.shape[1], dtype=torch.float32)
lang_id = torch.zeros_like(x)
lang_id[:, 1::2] = self.lang_id
return self.model.model.infer(
x=x,
x_lengths=x_lengths,
sid=sid,
tone=tones,
language=lang_id,
bert=bert,
ja_bert=ja_bert,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0]
def main():
generate_lexicon()
language = "EN"
model = TTS(language=language, device="cpu")
generate_tokens(model.hps["symbols"])
torch_model = ModelWrapper(model)
opset_version = 13
x = torch.randint(low=0, high=10, size=(60,), dtype=torch.int64)
print(x.shape)
x_lengths = torch.tensor([x.size(0)], dtype=torch.int64)
sid = torch.tensor([1], dtype=torch.int64)
tones = torch.zeros_like(x)
noise_scale = torch.tensor([1.0], dtype=torch.float32)
length_scale = torch.tensor([1.0], dtype=torch.float32)
noise_scale_w = torch.tensor([1.0], dtype=torch.float32)
x = x.unsqueeze(0)
tones = tones.unsqueeze(0)
filename = "model.onnx"
torch.onnx.export(
torch_model,
(
x,
x_lengths,
tones,
sid,
noise_scale,
length_scale,
noise_scale_w,
),
filename,
opset_version=opset_version,
input_names=[
"x",
"x_lengths",
"tones",
"sid",
"noise_scale",
"length_scale",
"noise_scale_w",
],
output_names=["y"],
dynamic_axes={
"x": {0: "N", 1: "L"},
"x_lengths": {0: "N"},
"tones": {0: "N", 1: "L"},
"y": {0: "N", 1: "S", 2: "T"},
},
)
meta_data = {
"model_type": "melo-vits",
"comment": "melo",
"version": 2,
"language": "English",
"add_blank": int(model.hps.data.add_blank),
"n_speakers": len(model.hps.data.spk2id), # 5
"jieba": 0,
"sample_rate": model.hps.data.sampling_rate,
"bert_dim": 1024,
"ja_bert_dim": 768,
"speaker_id": 0,
"lang_id": language_id_map[model.language],
"tone_start": language_tone_start_map[model.language],
"url": "https://github.com/myshell-ai/MeloTTS",
"license": "MIT license",
"description": "MeloTTS is a high-quality multi-lingual text-to-speech library by MyShell.ai",
}
add_meta_data(filename, meta_data)
if __name__ == "__main__":
main()