online-recognizer-ctc-impl.h 7.0 KB
// sherpa-onnx/csrc/online-recognizer-ctc-impl.h
//
// Copyright (c)  2023  Xiaomi Corporation

#ifndef SHERPA_ONNX_CSRC_ONLINE_RECOGNIZER_CTC_IMPL_H_
#define SHERPA_ONNX_CSRC_ONLINE_RECOGNIZER_CTC_IMPL_H_

#include <algorithm>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#include "sherpa-onnx/csrc/file-utils.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/online-ctc-decoder.h"
#include "sherpa-onnx/csrc/online-ctc-greedy-search-decoder.h"
#include "sherpa-onnx/csrc/online-ctc-model.h"
#include "sherpa-onnx/csrc/online-recognizer-impl.h"
#include "sherpa-onnx/csrc/symbol-table.h"

namespace sherpa_onnx {

static OnlineRecognizerResult Convert(const OnlineCtcDecoderResult &src,
                                      const SymbolTable &sym_table,
                                      float frame_shift_ms,
                                      int32_t subsampling_factor,
                                      int32_t segment,
                                      int32_t frames_since_start) {
  OnlineRecognizerResult r;
  r.tokens.reserve(src.tokens.size());
  r.timestamps.reserve(src.tokens.size());

  for (auto i : src.tokens) {
    auto sym = sym_table[i];

    r.text.append(sym);
    r.tokens.push_back(std::move(sym));
  }

  float frame_shift_s = frame_shift_ms / 1000. * subsampling_factor;
  for (auto t : src.timestamps) {
    float time = frame_shift_s * t;
    r.timestamps.push_back(time);
  }

  r.segment = segment;
  r.start_time = frames_since_start * frame_shift_ms / 1000.;

  return r;
}

class OnlineRecognizerCtcImpl : public OnlineRecognizerImpl {
 public:
  explicit OnlineRecognizerCtcImpl(const OnlineRecognizerConfig &config)
      : config_(config),
        model_(OnlineCtcModel::Create(config.model_config)),
        sym_(config.model_config.tokens),
        endpoint_(config_.endpoint_config) {
    if (!config.model_config.wenet_ctc.model.empty()) {
      // WeNet CTC models assume input samples are in the range
      // [-32768, 32767], so we set normalize_samples to false
      config_.feat_config.normalize_samples = false;
    }

    InitDecoder();
  }

#if __ANDROID_API__ >= 9
  explicit OnlineRecognizerCtcImpl(AAssetManager *mgr,
                                   const OnlineRecognizerConfig &config)
      : config_(config),
        model_(OnlineCtcModel::Create(mgr, config.model_config)),
        sym_(mgr, config.model_config.tokens),
        endpoint_(config_.endpoint_config) {
    if (!config.model_config.wenet_ctc.model.empty()) {
      // WeNet CTC models assume input samples are in the range
      // [-32768, 32767], so we set normalize_samples to false
      config_.feat_config.normalize_samples = false;
    }

    InitDecoder();
  }
#endif

  std::unique_ptr<OnlineStream> CreateStream() const override {
    auto stream = std::make_unique<OnlineStream>(config_.feat_config);
    stream->SetStates(model_->GetInitStates());

    return stream;
  }

  bool IsReady(OnlineStream *s) const override {
    return s->GetNumProcessedFrames() + model_->ChunkLength() <
           s->NumFramesReady();
  }

  void DecodeStreams(OnlineStream **ss, int32_t n) const override {
    for (int32_t i = 0; i != n; ++i) {
      DecodeStream(ss[i]);
    }
  }

  OnlineRecognizerResult GetResult(OnlineStream *s) const override {
    OnlineCtcDecoderResult decoder_result = s->GetCtcResult();

    // TODO(fangjun): Remember to change these constants if needed
    int32_t frame_shift_ms = 10;
    int32_t subsampling_factor = 4;
    return Convert(decoder_result, sym_, frame_shift_ms, subsampling_factor,
                   s->GetCurrentSegment(), s->GetNumFramesSinceStart());
  }

  bool IsEndpoint(OnlineStream *s) const override {
    if (!config_.enable_endpoint) {
      return false;
    }

    int32_t num_processed_frames = s->GetNumProcessedFrames();

    // frame shift is 10 milliseconds
    float frame_shift_in_seconds = 0.01;

    // subsampling factor is 4
    int32_t trailing_silence_frames = s->GetCtcResult().num_trailing_blanks * 4;

    return endpoint_.IsEndpoint(num_processed_frames, trailing_silence_frames,
                                frame_shift_in_seconds);
  }

  void Reset(OnlineStream *s) const override {
    // segment is incremented only when the last
    // result is not empty
    const auto &r = s->GetCtcResult();
    if (!r.tokens.empty()) {
      s->GetCurrentSegment() += 1;
    }

    // clear result
    s->SetCtcResult({});

    // clear states
    s->SetStates(model_->GetInitStates());

    // Note: We only update counters. The underlying audio samples
    // are not discarded.
    s->Reset();
  }

 private:
  void InitDecoder() {
    if (config_.decoding_method == "greedy_search") {
      if (!sym_.contains("<blk>") && !sym_.contains("<eps>") &&
          !sym_.contains("<blank>")) {
        SHERPA_ONNX_LOGE(
            "We expect that tokens.txt contains "
            "the symbol <blk> or <eps> or <blank> and its ID.");
        exit(-1);
      }

      int32_t blank_id = 0;
      if (sym_.contains("<blk>")) {
        blank_id = sym_["<blk>"];
      } else if (sym_.contains("<eps>")) {
        // for tdnn models of the yesno recipe from icefall
        blank_id = sym_["<eps>"];
      } else if (sym_.contains("<blank>")) {
        // for WeNet CTC models
        blank_id = sym_["<blank>"];
      }

      decoder_ = std::make_unique<OnlineCtcGreedySearchDecoder>(blank_id);
    } else {
      SHERPA_ONNX_LOGE("Unsupported decoding method: %s",
                       config_.decoding_method.c_str());
      exit(-1);
    }
  }

  void DecodeStream(OnlineStream *s) const {
    int32_t chunk_length = model_->ChunkLength();
    int32_t chunk_shift = model_->ChunkShift();

    int32_t feat_dim = s->FeatureDim();

    const auto num_processed_frames = s->GetNumProcessedFrames();
    std::vector<float> frames =
        s->GetFrames(num_processed_frames, chunk_length);
    s->GetNumProcessedFrames() += chunk_shift;

    auto memory_info =
        Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);

    std::array<int64_t, 3> x_shape{1, chunk_length, feat_dim};
    Ort::Value x =
        Ort::Value::CreateTensor(memory_info, frames.data(), frames.size(),
                                 x_shape.data(), x_shape.size());
    auto out = model_->Forward(std::move(x), std::move(s->GetStates()));
    int32_t num_states = static_cast<int32_t>(out.size()) - 1;

    std::vector<Ort::Value> states;
    states.reserve(num_states);

    for (int32_t i = 0; i != num_states; ++i) {
      states.push_back(std::move(out[i + 1]));
    }
    s->SetStates(std::move(states));

    std::vector<OnlineCtcDecoderResult> results(1);
    results[0] = std::move(s->GetCtcResult());

    decoder_->Decode(std::move(out[0]), &results);
    s->SetCtcResult(results[0]);
  }

 private:
  OnlineRecognizerConfig config_;
  std::unique_ptr<OnlineCtcModel> model_;
  std::unique_ptr<OnlineCtcDecoder> decoder_;
  SymbolTable sym_;
  Endpoint endpoint_;
};

}  // namespace sherpa_onnx

#endif  // SHERPA_ONNX_CSRC_ONLINE_RECOGNIZER_CTC_IMPL_H_