online-recognizer.cc
5.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
// sherpa-onnx/python/csrc/online-recongizer.cc
//
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/python/csrc/online-recognizer.h"
#include <string>
#include <vector>
#include "sherpa-onnx/csrc/online-recognizer.h"
namespace sherpa_onnx {
static void PybindOnlineRecognizerResult(py::module *m) {
using PyClass = OnlineRecognizerResult;
py::class_<PyClass>(*m, "OnlineRecognizerResult")
.def_property_readonly(
"text",
[](PyClass &self) -> py::str {
return py::str(PyUnicode_DecodeUTF8(self.text.c_str(),
self.text.size(), "ignore"));
})
.def_property_readonly(
"tokens",
[](PyClass &self) -> std::vector<std::string> { return self.tokens; })
.def_property_readonly(
"start_time", [](PyClass &self) -> float { return self.start_time; })
.def_property_readonly(
"timestamps",
[](PyClass &self) -> std::vector<float> { return self.timestamps; })
.def_property_readonly(
"ys_probs",
[](PyClass &self) -> std::vector<float> { return self.ys_probs; })
.def_property_readonly(
"lm_probs",
[](PyClass &self) -> std::vector<float> { return self.lm_probs; })
.def_property_readonly("context_scores",
[](PyClass &self) -> std::vector<float> {
return self.context_scores;
})
.def_property_readonly(
"segment", [](PyClass &self) -> int32_t { return self.segment; })
.def_property_readonly(
"words",
[](PyClass &self) -> std::vector<int32_t> { return self.words; })
.def_property_readonly(
"is_final", [](PyClass &self) -> bool { return self.is_final; })
.def("__str__", &PyClass::AsJsonString,
py::call_guard<py::gil_scoped_release>())
.def("as_json_string", &PyClass::AsJsonString,
py::call_guard<py::gil_scoped_release>());
}
static void PybindOnlineRecognizerConfig(py::module *m) {
using PyClass = OnlineRecognizerConfig;
py::class_<PyClass>(*m, "OnlineRecognizerConfig")
.def(py::init<const FeatureExtractorConfig &, const OnlineModelConfig &,
const OnlineLMConfig &, const EndpointConfig &,
const OnlineCtcFstDecoderConfig &, bool,
const std::string &, int32_t, const std::string &, float,
float, float, const std::string &, const std::string &,
bool, const HomophoneReplacerConfig &>(),
py::arg("feat_config"), py::arg("model_config"),
py::arg("lm_config") = OnlineLMConfig(),
py::arg("endpoint_config") = EndpointConfig(),
py::arg("ctc_fst_decoder_config") = OnlineCtcFstDecoderConfig(),
py::arg("enable_endpoint"), py::arg("decoding_method"),
py::arg("max_active_paths") = 4, py::arg("hotwords_file") = "",
py::arg("hotwords_score") = 0, py::arg("blank_penalty") = 0.0,
py::arg("temperature_scale") = 2.0, py::arg("rule_fsts") = "",
py::arg("rule_fars") = "", py::arg("reset_encoder") = false,
py::arg("hr") = HomophoneReplacerConfig{})
.def_readwrite("feat_config", &PyClass::feat_config)
.def_readwrite("model_config", &PyClass::model_config)
.def_readwrite("lm_config", &PyClass::lm_config)
.def_readwrite("endpoint_config", &PyClass::endpoint_config)
.def_readwrite("ctc_fst_decoder_config", &PyClass::ctc_fst_decoder_config)
.def_readwrite("enable_endpoint", &PyClass::enable_endpoint)
.def_readwrite("decoding_method", &PyClass::decoding_method)
.def_readwrite("max_active_paths", &PyClass::max_active_paths)
.def_readwrite("hotwords_file", &PyClass::hotwords_file)
.def_readwrite("hotwords_score", &PyClass::hotwords_score)
.def_readwrite("blank_penalty", &PyClass::blank_penalty)
.def_readwrite("temperature_scale", &PyClass::temperature_scale)
.def_readwrite("rule_fsts", &PyClass::rule_fsts)
.def_readwrite("rule_fars", &PyClass::rule_fars)
.def_readwrite("reset_encoder", &PyClass::reset_encoder)
.def_readwrite("hr", &PyClass::hr)
.def("__str__", &PyClass::ToString);
}
void PybindOnlineRecognizer(py::module *m) {
PybindOnlineRecognizerResult(m);
PybindOnlineRecognizerConfig(m);
using PyClass = OnlineRecognizer;
py::class_<PyClass>(*m, "OnlineRecognizer")
.def(py::init<const OnlineRecognizerConfig &>(), py::arg("config"),
py::call_guard<py::gil_scoped_release>())
.def(
"create_stream",
[](const PyClass &self) { return self.CreateStream(); },
py::call_guard<py::gil_scoped_release>())
.def(
"create_stream",
[](PyClass &self, const std::string &hotwords) {
return self.CreateStream(hotwords);
},
py::arg("hotwords"), py::call_guard<py::gil_scoped_release>())
.def("is_ready", &PyClass::IsReady,
py::call_guard<py::gil_scoped_release>())
.def("decode_stream", &PyClass::DecodeStream,
py::call_guard<py::gil_scoped_release>())
.def(
"decode_streams",
[](PyClass &self, std::vector<OnlineStream *> ss) {
self.DecodeStreams(ss.data(), ss.size());
},
py::call_guard<py::gil_scoped_release>())
.def("get_result", &PyClass::GetResult,
py::call_guard<py::gil_scoped_release>())
.def("is_endpoint", &PyClass::IsEndpoint,
py::call_guard<py::gil_scoped_release>())
.def("reset", &PyClass::Reset, py::call_guard<py::gil_scoped_release>());
}
} // namespace sherpa_onnx