online-recognizer-transducer-rknn-impl.h
9.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// sherpa-onnx/csrc/rknn/online-recognizer-transducer-rknn-impl.h
//
// Copyright (c) 2025 Xiaomi Corporation
#ifndef SHERPA_ONNX_CSRC_RKNN_ONLINE_RECOGNIZER_TRANSDUCER_RKNN_IMPL_H_
#define SHERPA_ONNX_CSRC_RKNN_ONLINE_RECOGNIZER_TRANSDUCER_RKNN_IMPL_H_
#include <algorithm>
#include <memory>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/online-recognizer-impl.h"
#include "sherpa-onnx/csrc/online-recognizer.h"
#include "sherpa-onnx/csrc/rknn/online-stream-rknn.h"
#include "sherpa-onnx/csrc/rknn/online-transducer-decoder-rknn.h"
#include "sherpa-onnx/csrc/rknn/online-transducer-greedy-search-decoder-rknn.h"
#include "sherpa-onnx/csrc/rknn/online-transducer-modified-beam-search-decoder-rknn.h"
#include "sherpa-onnx/csrc/rknn/online-zipformer-transducer-model-rknn.h"
#include "sherpa-onnx/csrc/symbol-table.h"
namespace sherpa_onnx {
OnlineRecognizerResult Convert(const OnlineTransducerDecoderResultRknn &src,
const SymbolTable &sym_table,
float frame_shift_ms, int32_t subsampling_factor,
int32_t segment, int32_t frames_since_start) {
OnlineRecognizerResult r;
r.tokens.reserve(src.tokens.size());
r.timestamps.reserve(src.tokens.size());
std::string text;
for (auto i : src.tokens) {
auto sym = sym_table[i];
text.append(sym);
if (sym.size() == 1 && (sym[0] < 0x20 || sym[0] > 0x7e)) {
// for bpe models with byte_fallback
// (but don't rewrite printable characters 0x20..0x7e,
// which collide with standard BPE units)
std::ostringstream os;
os << "<0x" << std::hex << std::uppercase
<< (static_cast<int32_t>(sym[0]) & 0xff) << ">";
sym = os.str();
}
r.tokens.push_back(std::move(sym));
}
if (sym_table.IsByteBpe()) {
text = sym_table.DecodeByteBpe(text);
}
r.text = std::move(text);
float frame_shift_s = frame_shift_ms / 1000. * subsampling_factor;
for (auto t : src.timestamps) {
float time = frame_shift_s * t;
r.timestamps.push_back(time);
}
r.segment = segment;
r.start_time = frames_since_start * frame_shift_ms / 1000.;
return r;
}
class OnlineRecognizerTransducerRknnImpl : public OnlineRecognizerImpl {
public:
explicit OnlineRecognizerTransducerRknnImpl(
const OnlineRecognizerConfig &config)
: OnlineRecognizerImpl(config),
config_(config),
endpoint_(config_.endpoint_config),
model_(std::make_unique<OnlineZipformerTransducerModelRknn>(
config.model_config)) {
if (!config.model_config.tokens_buf.empty()) {
sym_ = SymbolTable(config.model_config.tokens_buf, false);
} else {
/// assuming tokens_buf and tokens are guaranteed not being both empty
sym_ = SymbolTable(config.model_config.tokens, true);
}
if (sym_.Contains("<unk>")) {
unk_id_ = sym_["<unk>"];
}
if (config.decoding_method == "greedy_search") {
decoder_ = std::make_unique<OnlineTransducerGreedySearchDecoderRknn>(
model_.get(), unk_id_);
} else if (config.decoding_method == "modified_beam_search") {
decoder_ =
std::make_unique<OnlineTransducerModifiedBeamSearchDecoderRknn>(
model_.get(), config.max_active_paths, unk_id_);
} else {
SHERPA_ONNX_LOGE(
"Invalid decoding method: '%s'. Support only greedy_search and "
"modified_beam_search.",
config.decoding_method.c_str());
SHERPA_ONNX_EXIT(-1);
}
}
template <typename Manager>
explicit OnlineRecognizerTransducerRknnImpl(
Manager *mgr, const OnlineRecognizerConfig &config)
: OnlineRecognizerImpl(mgr, config),
config_(config),
endpoint_(config_.endpoint_config),
model_(std::make_unique<OnlineZipformerTransducerModelRknn>(
mgr, config_.model_config)) {
if (!config.model_config.tokens_buf.empty()) {
sym_ = SymbolTable(config.model_config.tokens_buf, false);
} else {
/// assuming tokens_buf and tokens are guaranteed not being both empty
sym_ = SymbolTable(mgr, config.model_config.tokens);
}
if (sym_.Contains("<unk>")) {
unk_id_ = sym_["<unk>"];
}
if (config.decoding_method == "greedy_search") {
decoder_ = std::make_unique<OnlineTransducerGreedySearchDecoderRknn>(
model_.get(), unk_id_);
} else if (config.decoding_method == "modified_beam_search") {
decoder_ =
std::make_unique<OnlineTransducerModifiedBeamSearchDecoderRknn>(
model_.get(), config.max_active_paths, unk_id_);
} else {
SHERPA_ONNX_LOGE(
"Invalid decoding method: '%s'. Support only greedy_search and "
"modified_beam_search.",
config.decoding_method.c_str());
SHERPA_ONNX_EXIT(-1);
}
}
std::unique_ptr<OnlineStream> CreateStream() const override {
auto stream = std::make_unique<OnlineStreamRknn>(config_.feat_config);
auto r = decoder_->GetEmptyResult();
stream->SetZipformerResult(std::move(r));
stream->SetZipformerEncoderStates(model_->GetEncoderInitStates());
return stream;
}
std::unique_ptr<OnlineStream> CreateStream(
const std::string &hotwords) const override {
SHERPA_ONNX_LOGE("Hotwords for RKNN is not supported now.");
return CreateStream();
}
bool IsReady(OnlineStream *s) const override {
return s->GetNumProcessedFrames() + model_->ChunkSize() <
s->NumFramesReady();
}
// Warmping up engine with wp: warm_up count and max-batch-size
void DecodeStreams(OnlineStream **ss, int32_t n) const override {
for (int32_t i = 0; i < n; ++i) {
DecodeStream(reinterpret_cast<OnlineStreamRknn *>(ss[i]));
}
}
OnlineRecognizerResult GetResult(OnlineStream *s) const override {
OnlineTransducerDecoderResultRknn decoder_result =
reinterpret_cast<OnlineStreamRknn *>(s)->GetZipformerResult();
decoder_->StripLeadingBlanks(&decoder_result);
// TODO(fangjun): Remember to change these constants if needed
int32_t frame_shift_ms = 10;
int32_t subsampling_factor = 4;
auto r = Convert(decoder_result, sym_, frame_shift_ms, subsampling_factor,
s->GetCurrentSegment(), s->GetNumFramesSinceStart());
r.text = ApplyInverseTextNormalization(std::move(r.text));
r.text = ApplyHomophoneReplacer(std::move(r.text));
return r;
}
bool IsEndpoint(OnlineStream *s) const override {
if (!config_.enable_endpoint) {
return false;
}
int32_t num_processed_frames = s->GetNumProcessedFrames();
// frame shift is 10 milliseconds
float frame_shift_in_seconds = 0.01;
// subsampling factor is 4
int32_t trailing_silence_frames = reinterpret_cast<OnlineStreamRknn *>(s)
->GetZipformerResult()
.num_trailing_blanks *
4;
return endpoint_.IsEndpoint(num_processed_frames, trailing_silence_frames,
frame_shift_in_seconds);
}
void Reset(OnlineStream *s) const override {
int32_t context_size = model_->ContextSize();
{
// segment is incremented only when the last
// result is not empty, contains non-blanks and longer than context_size)
const auto &r =
reinterpret_cast<OnlineStreamRknn *>(s)->GetZipformerResult();
if (!r.tokens.empty() && r.tokens.back() != 0 &&
r.tokens.size() > context_size) {
s->GetCurrentSegment() += 1;
}
}
// reset encoder states
// reinterpret_cast<OnlineStreamRknn*>(s)->SetZipformerEncoderStates(model_->GetEncoderInitStates());
auto r = decoder_->GetEmptyResult();
auto last_result =
reinterpret_cast<OnlineStreamRknn *>(s)->GetZipformerResult();
// if last result is not empty, then
// preserve last tokens as the context for next result
if (static_cast<int32_t>(last_result.tokens.size()) > context_size) {
r.tokens = {last_result.tokens.end() - context_size,
last_result.tokens.end()};
}
reinterpret_cast<OnlineStreamRknn *>(s)->SetZipformerResult(std::move(r));
// Note: We only update counters. The underlying audio samples
// are not discarded.
s->Reset();
}
private:
void DecodeStream(OnlineStreamRknn *s) const {
int32_t chunk_size = model_->ChunkSize();
int32_t chunk_shift = model_->ChunkShift();
int32_t feature_dim = s->FeatureDim();
const auto num_processed_frames = s->GetNumProcessedFrames();
std::vector<float> features =
s->GetFrames(num_processed_frames, chunk_size);
s->GetNumProcessedFrames() += chunk_shift;
auto &states = s->GetZipformerEncoderStates();
auto p = model_->RunEncoder(features, std::move(states));
states = std::move(p.second);
auto &r = s->GetZipformerResult();
decoder_->Decode(std::move(p.first), &r);
}
private:
OnlineRecognizerConfig config_;
SymbolTable sym_;
Endpoint endpoint_;
int32_t unk_id_ = -1;
std::unique_ptr<OnlineZipformerTransducerModelRknn> model_;
std::unique_ptr<OnlineTransducerDecoderRknn> decoder_;
};
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_RKNN_ONLINE_RECOGNIZER_TRANSDUCER_RKNN_IMPL_H_