online-recognizer-transducer-impl.h
17.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
// sherpa-onnx/csrc/online-recognizer-transducer-impl.h
//
// Copyright (c) 2022-2023 Xiaomi Corporation
#ifndef SHERPA_ONNX_CSRC_ONLINE_RECOGNIZER_TRANSDUCER_IMPL_H_
#define SHERPA_ONNX_CSRC_ONLINE_RECOGNIZER_TRANSDUCER_IMPL_H_
#include <algorithm>
#include <ios>
#include <memory>
#include <regex> // NOLINT
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "sherpa-onnx/csrc/file-utils.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/online-lm.h"
#include "sherpa-onnx/csrc/online-recognizer-impl.h"
#include "sherpa-onnx/csrc/online-recognizer.h"
#include "sherpa-onnx/csrc/online-transducer-decoder.h"
#include "sherpa-onnx/csrc/online-transducer-greedy-search-decoder.h"
#include "sherpa-onnx/csrc/online-transducer-model.h"
#include "sherpa-onnx/csrc/online-transducer-modified-beam-search-decoder.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/symbol-table.h"
#include "sherpa-onnx/csrc/utils.h"
#include "ssentencepiece/csrc/ssentencepiece.h"
namespace sherpa_onnx {
OnlineRecognizerResult Convert(const OnlineTransducerDecoderResult &src,
const SymbolTable &sym_table,
float frame_shift_ms, int32_t subsampling_factor,
int32_t segment, int32_t frames_since_start) {
OnlineRecognizerResult r;
r.tokens.reserve(src.tokens.size());
r.timestamps.reserve(src.tokens.size());
std::string text;
for (auto i : src.tokens) {
auto sym = sym_table[i];
if (sym == "<unk>") {
continue;
}
text.append(sym);
if (sym.size() == 1 && (sym[0] < 0x20 || sym[0] > 0x7e)) {
// for bpe models with byte_fallback
// (but don't rewrite printable characters 0x20..0x7e,
// which collide with standard BPE units)
std::ostringstream os;
os << "<0x" << std::hex << std::uppercase
<< (static_cast<int32_t>(sym[0]) & 0xff) << ">";
sym = os.str();
}
r.tokens.push_back(std::move(sym));
}
if (sym_table.IsByteBpe()) {
text = sym_table.DecodeByteBpe(text);
}
r.text = std::move(text);
float frame_shift_s = frame_shift_ms / 1000. * subsampling_factor;
for (auto t : src.timestamps) {
float time = frame_shift_s * t;
r.timestamps.push_back(time);
}
r.ys_probs = std::move(src.ys_probs);
r.lm_probs = std::move(src.lm_probs);
r.context_scores = std::move(src.context_scores);
r.segment = segment;
r.start_time = frames_since_start * frame_shift_ms / 1000.;
return r;
}
class OnlineRecognizerTransducerImpl : public OnlineRecognizerImpl {
public:
explicit OnlineRecognizerTransducerImpl(const OnlineRecognizerConfig &config)
: OnlineRecognizerImpl(config),
config_(config),
model_(OnlineTransducerModel::Create(config.model_config)),
endpoint_(config_.endpoint_config) {
if (!config.model_config.tokens_buf.empty()) {
sym_ = SymbolTable(config.model_config.tokens_buf, false);
} else {
/// assuming tokens_buf and tokens are guaranteed not being both empty
sym_ = SymbolTable(config.model_config.tokens, true);
}
if (sym_.Contains("<unk>")) {
unk_id_ = sym_["<unk>"];
}
model_->SetFeatureDim(config.feat_config.feature_dim);
if (config.decoding_method == "modified_beam_search") {
if (!config_.model_config.bpe_vocab.empty()) {
bpe_encoder_ = std::make_unique<ssentencepiece::Ssentencepiece>(
config_.model_config.bpe_vocab);
}
if (!config_.hotwords_buf.empty()) {
InitHotwordsFromBufStr();
} else if (!config_.hotwords_file.empty()) {
InitHotwords();
}
if (!config_.lm_config.model.empty()) {
lm_ = OnlineLM::Create(config.lm_config);
}
decoder_ = std::make_unique<OnlineTransducerModifiedBeamSearchDecoder>(
model_.get(), lm_.get(), config_.max_active_paths,
config_.lm_config.scale, config_.lm_config.shallow_fusion, unk_id_,
config_.blank_penalty, config_.temperature_scale);
} else if (config.decoding_method == "greedy_search") {
decoder_ = std::make_unique<OnlineTransducerGreedySearchDecoder>(
model_.get(), unk_id_, config_.blank_penalty,
config_.temperature_scale);
} else {
SHERPA_ONNX_LOGE("Unsupported decoding method: %s",
config.decoding_method.c_str());
exit(-1);
}
}
template <typename Manager>
explicit OnlineRecognizerTransducerImpl(Manager *mgr,
const OnlineRecognizerConfig &config)
: OnlineRecognizerImpl(mgr, config),
config_(config),
model_(OnlineTransducerModel::Create(mgr, config.model_config)),
sym_(mgr, config.model_config.tokens),
endpoint_(config_.endpoint_config) {
if (sym_.Contains("<unk>")) {
unk_id_ = sym_["<unk>"];
}
model_->SetFeatureDim(config.feat_config.feature_dim);
if (config.decoding_method == "modified_beam_search") {
#if 0
// TODO(fangjun): Implement it
if (!config_.lm_config.model.empty()) {
lm_ = OnlineLM::Create(mgr, config.lm_config);
}
#endif
if (!config_.model_config.bpe_vocab.empty()) {
auto buf = ReadFile(mgr, config_.model_config.bpe_vocab);
std::istringstream iss(std::string(buf.begin(), buf.end()));
bpe_encoder_ = std::make_unique<ssentencepiece::Ssentencepiece>(iss);
}
if (!config_.hotwords_file.empty()) {
InitHotwords(mgr);
}
decoder_ = std::make_unique<OnlineTransducerModifiedBeamSearchDecoder>(
model_.get(), lm_.get(), config_.max_active_paths,
config_.lm_config.scale, config_.lm_config.shallow_fusion, unk_id_,
config_.blank_penalty, config_.temperature_scale);
} else if (config.decoding_method == "greedy_search") {
decoder_ = std::make_unique<OnlineTransducerGreedySearchDecoder>(
model_.get(), unk_id_, config_.blank_penalty,
config_.temperature_scale);
} else {
SHERPA_ONNX_LOGE("Unsupported decoding method: %s",
config.decoding_method.c_str());
exit(-1);
}
}
std::unique_ptr<OnlineStream> CreateStream() const override {
auto stream =
std::make_unique<OnlineStream>(config_.feat_config, hotwords_graph_);
InitOnlineStream(stream.get());
return stream;
}
std::unique_ptr<OnlineStream> CreateStream(
const std::string &hotwords) const override {
auto hws = std::regex_replace(hotwords, std::regex("/"), "\n");
std::istringstream is(hws);
std::vector<std::vector<int32_t>> current;
std::vector<float> current_scores;
if (!EncodeHotwords(is, config_.model_config.modeling_unit, sym_,
bpe_encoder_.get(), ¤t, ¤t_scores)) {
SHERPA_ONNX_LOGE("Encode hotwords failed, skipping, hotwords are : %s",
hotwords.c_str());
}
int32_t num_default_hws = hotwords_.size();
int32_t num_hws = current.size();
current.insert(current.end(), hotwords_.begin(), hotwords_.end());
if (!current_scores.empty() && !boost_scores_.empty()) {
current_scores.insert(current_scores.end(), boost_scores_.begin(),
boost_scores_.end());
} else if (!current_scores.empty() && boost_scores_.empty()) {
current_scores.insert(current_scores.end(), num_default_hws,
config_.hotwords_score);
} else if (current_scores.empty() && !boost_scores_.empty()) {
current_scores.insert(current_scores.end(), num_hws,
config_.hotwords_score);
current_scores.insert(current_scores.end(), boost_scores_.begin(),
boost_scores_.end());
} else {
// Do nothing.
}
auto context_graph = std::make_shared<ContextGraph>(
current, config_.hotwords_score, current_scores);
auto stream =
std::make_unique<OnlineStream>(config_.feat_config, context_graph);
InitOnlineStream(stream.get());
return stream;
}
bool IsReady(OnlineStream *s) const override {
return s->GetNumProcessedFrames() + model_->ChunkSize() <
s->NumFramesReady();
}
// Warmping up engine with wp: warm_up count and max-batch-size
void WarmpUpRecognizer(int32_t warmup, int32_t mbs) const override {
auto max_batch_size = mbs;
if (warmup <= 0 || warmup > 100) {
return;
}
int32_t chunk_size = model_->ChunkSize();
int32_t chunk_shift = model_->ChunkShift();
int32_t feature_dim = 80;
std::vector<OnlineTransducerDecoderResult> results(max_batch_size);
std::vector<float> features_vec(max_batch_size * chunk_size * feature_dim);
std::vector<std::vector<Ort::Value>> states_vec(max_batch_size);
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 3> x_shape{max_batch_size, chunk_size, feature_dim};
for (int32_t i = 0; i != max_batch_size; ++i) {
states_vec[i] = model_->GetEncoderInitStates();
results[i] = decoder_->GetEmptyResult();
}
for (int32_t i = 0; i != warmup; ++i) {
auto states = model_->StackStates(states_vec);
Ort::Value x = Ort::Value::CreateTensor(memory_info, features_vec.data(),
features_vec.size(),
x_shape.data(), x_shape.size());
auto x_copy = Clone(model_->Allocator(), &x);
auto pair = model_->RunEncoder(std::move(x), std::move(states),
std::move(x_copy));
decoder_->Decode(std::move(pair.first), &results);
}
}
void DecodeStreams(OnlineStream **ss, int32_t n) const override {
int32_t chunk_size = model_->ChunkSize();
int32_t chunk_shift = model_->ChunkShift();
int32_t feature_dim = ss[0]->FeatureDim();
std::vector<OnlineTransducerDecoderResult> results(n);
std::vector<float> features_vec(n * chunk_size * feature_dim);
std::vector<std::vector<Ort::Value>> states_vec(n);
std::vector<int64_t> all_processed_frames(n);
bool has_context_graph = false;
for (int32_t i = 0; i != n; ++i) {
if (!has_context_graph && ss[i]->GetContextGraph()) {
has_context_graph = true;
}
const auto num_processed_frames = ss[i]->GetNumProcessedFrames();
std::vector<float> features =
ss[i]->GetFrames(num_processed_frames, chunk_size);
// Question: should num_processed_frames include chunk_shift?
ss[i]->GetNumProcessedFrames() += chunk_shift;
std::copy(features.begin(), features.end(),
features_vec.data() + i * chunk_size * feature_dim);
results[i] = std::move(ss[i]->GetResult());
states_vec[i] = std::move(ss[i]->GetStates());
all_processed_frames[i] = num_processed_frames;
}
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 3> x_shape{n, chunk_size, feature_dim};
Ort::Value x = Ort::Value::CreateTensor(memory_info, features_vec.data(),
features_vec.size(), x_shape.data(),
x_shape.size());
std::array<int64_t, 1> processed_frames_shape{
static_cast<int64_t>(all_processed_frames.size())};
Ort::Value processed_frames = Ort::Value::CreateTensor(
memory_info, all_processed_frames.data(), all_processed_frames.size(),
processed_frames_shape.data(), processed_frames_shape.size());
auto states = model_->StackStates(states_vec);
auto pair = model_->RunEncoder(std::move(x), std::move(states),
std::move(processed_frames));
if (has_context_graph) {
decoder_->Decode(std::move(pair.first), ss, &results);
} else {
decoder_->Decode(std::move(pair.first), &results);
}
std::vector<std::vector<Ort::Value>> next_states =
model_->UnStackStates(pair.second);
for (int32_t i = 0; i != n; ++i) {
ss[i]->SetResult(results[i]);
ss[i]->SetStates(std::move(next_states[i]));
}
}
OnlineRecognizerResult GetResult(OnlineStream *s) const override {
OnlineTransducerDecoderResult decoder_result = s->GetResult();
decoder_->StripLeadingBlanks(&decoder_result);
// TODO(fangjun): Remember to change these constants if needed
int32_t frame_shift_ms = 10;
int32_t subsampling_factor = 4;
auto r = Convert(decoder_result, sym_, frame_shift_ms, subsampling_factor,
s->GetCurrentSegment(), s->GetNumFramesSinceStart());
r.text = ApplyInverseTextNormalization(std::move(r.text));
r.text = ApplyHomophoneReplacer(std::move(r.text));
return r;
}
bool IsEndpoint(OnlineStream *s) const override {
if (!config_.enable_endpoint) {
return false;
}
int32_t num_processed_frames = s->GetNumProcessedFrames();
// frame shift is 10 milliseconds
float frame_shift_in_seconds = 0.01;
// subsampling factor is 4
int32_t trailing_silence_frames = s->GetResult().num_trailing_blanks * 4;
return endpoint_.IsEndpoint(num_processed_frames, trailing_silence_frames,
frame_shift_in_seconds);
}
void Reset(OnlineStream *s) const override {
int32_t context_size = model_->ContextSize();
{
// segment is incremented only when the last
// result is not empty, contains non-blanks and longer than context_size)
const auto &r = s->GetResult();
if (!r.tokens.empty() && r.tokens.back() != 0 &&
r.tokens.size() > context_size) {
s->GetCurrentSegment() += 1;
}
}
auto r = decoder_->GetEmptyResult();
auto last_result = s->GetResult();
if (static_cast<int32_t>(last_result.tokens.size()) > context_size) {
// if last result is not empty, then
// truncate all last hyps and save as the 'ys' context for next result
// (the encoder state buffers are kept)
for (const auto &it : last_result.hyps) {
auto h = it.second;
r.hyps.Add({std::vector<int64_t>(h.ys.end() - context_size, h.ys.end()),
h.log_prob});
}
r.tokens = std::vector<int64_t>(last_result.tokens.end() - context_size,
last_result.tokens.end());
} else {
if (config_.reset_encoder) {
// reset encoder states, use blanks as 'ys' context
s->SetStates(model_->GetEncoderInitStates());
}
}
// but reset all contextual biasing graph states to root
if (config_.decoding_method == "modified_beam_search" &&
nullptr != s->GetContextGraph()) {
for (auto it = r.hyps.begin(); it != r.hyps.end(); ++it) {
it->second.context_state = s->GetContextGraph()->Root();
}
}
s->SetResult(r);
// Note: We only update counters. The underlying audio samples
// are not discarded.
s->Reset();
}
private:
void InitHotwords() {
// each line in hotwords_file contains space-separated words
std::ifstream is(config_.hotwords_file);
if (!is) {
SHERPA_ONNX_LOGE("Open hotwords file failed: %s",
config_.hotwords_file.c_str());
exit(-1);
}
if (!EncodeHotwords(is, config_.model_config.modeling_unit, sym_,
bpe_encoder_.get(), &hotwords_, &boost_scores_)) {
SHERPA_ONNX_LOGE(
"Failed to encode some hotwords, skip them already, see logs above "
"for details.");
}
hotwords_graph_ = std::make_shared<ContextGraph>(
hotwords_, config_.hotwords_score, boost_scores_);
}
template <typename Manager>
void InitHotwords(Manager *mgr) {
// each line in hotwords_file contains space-separated words
auto buf = ReadFile(mgr, config_.hotwords_file);
std::istringstream is(std::string(buf.begin(), buf.end()));
if (!is) {
SHERPA_ONNX_LOGE("Open hotwords file failed: %s",
config_.hotwords_file.c_str());
exit(-1);
}
if (!EncodeHotwords(is, config_.model_config.modeling_unit, sym_,
bpe_encoder_.get(), &hotwords_, &boost_scores_)) {
SHERPA_ONNX_LOGE(
"Failed to encode some hotwords, skip them already, see logs above "
"for details.");
}
hotwords_graph_ = std::make_shared<ContextGraph>(
hotwords_, config_.hotwords_score, boost_scores_);
}
void InitHotwordsFromBufStr() {
// each line in hotwords_file contains space-separated words
std::istringstream iss(config_.hotwords_buf);
if (!EncodeHotwords(iss, config_.model_config.modeling_unit, sym_,
bpe_encoder_.get(), &hotwords_, &boost_scores_)) {
SHERPA_ONNX_LOGE(
"Failed to encode some hotwords, skip them already, see logs above "
"for details.");
}
hotwords_graph_ = std::make_shared<ContextGraph>(
hotwords_, config_.hotwords_score, boost_scores_);
}
void InitOnlineStream(OnlineStream *stream) const {
auto r = decoder_->GetEmptyResult();
if (config_.decoding_method == "modified_beam_search" &&
nullptr != stream->GetContextGraph()) {
// r.hyps has only one element.
for (auto it = r.hyps.begin(); it != r.hyps.end(); ++it) {
it->second.context_state = stream->GetContextGraph()->Root();
}
}
stream->SetResult(r);
stream->SetStates(model_->GetEncoderInitStates());
}
private:
OnlineRecognizerConfig config_;
std::vector<std::vector<int32_t>> hotwords_;
std::vector<float> boost_scores_;
ContextGraphPtr hotwords_graph_;
std::unique_ptr<ssentencepiece::Ssentencepiece> bpe_encoder_;
std::unique_ptr<OnlineTransducerModel> model_;
std::unique_ptr<OnlineLM> lm_;
std::unique_ptr<OnlineTransducerDecoder> decoder_;
SymbolTable sym_;
Endpoint endpoint_;
int32_t unk_id_ = -1;
};
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_ONLINE_RECOGNIZER_TRANSDUCER_IMPL_H_