vad-remove-non-speech-segments-from-file.py
2.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#!/usr/bin/env python3
"""
This file shows how to remove non-speech segments
and merge all speech segments into a large segment
and save it to a file.
Usage
python3 ./vad-remove-non-speech-segments-from-file.py \
--silero-vad-model silero_vad.onnx \
input.wav \
output.wav
Please visit
https://github.com/snakers4/silero-vad/blob/master/files/silero_vad.onnx
to download silero_vad.onnx
For instance,
wget https://github.com/snakers4/silero-vad/raw/master/files/silero_vad.onnx
"""
import argparse
from pathlib import Path
from typing import Tuple
import numpy as np
import sherpa_onnx
import soundfile as sf
def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
)
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--silero-vad-model",
type=str,
required=True,
help="Path to silero_vad.onnx",
)
parser.add_argument(
"input",
type=str,
help="Path to input.wav",
)
parser.add_argument(
"output",
type=str,
help="Path to output.wav",
)
return parser.parse_args()
def load_audio(filename: str) -> Tuple[np.ndarray, int]:
data, sample_rate = sf.read(
filename,
always_2d=True,
dtype="float32",
)
data = data[:, 0] # use only the first channel
samples = np.ascontiguousarray(data)
return samples, sample_rate
def main():
args = get_args()
assert_file_exists(args.silero_vad_model)
assert_file_exists(args.input)
samples, sample_rate = load_audio(args.input)
if sample_rate != 16000:
import librosa
samples = librosa.resample(samples, orig_sr=sample_rate, target_sr=16000)
sample_rate = 16000
config = sherpa_onnx.VadModelConfig()
config.silero_vad.model = args.silero_vad_model
config.sample_rate = sample_rate
window_size = config.silero_vad.window_size
vad = sherpa_onnx.VoiceActivityDetector(config, buffer_size_in_seconds=30)
speech_samples = []
while len(samples) > window_size:
vad.accept_waveform(samples[:window_size])
samples = samples[window_size:]
while not vad.empty():
speech_samples.extend(vad.front.samples)
vad.pop()
speech_samples = np.array(speech_samples, dtype=np.float32)
sf.write(args.output, speech_samples, samplerate=sample_rate)
print(f"Saved to {args.output}")
if __name__ == "__main__":
main()