circular-buffer.cc
5.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// sherpa-onnx/csrc/circular-buffer.cc
//
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/circular-buffer.h"
#include <algorithm>
#include "sherpa-onnx/csrc/macros.h"
namespace sherpa_onnx {
CircularBuffer::CircularBuffer(int32_t capacity) {
if (capacity <= 0) {
SHERPA_ONNX_LOGE("Please specify a positive capacity. Given: %d\n",
capacity);
exit(-1);
}
buffer_.resize(capacity);
}
void CircularBuffer::Resize(int32_t new_capacity) {
int32_t capacity = static_cast<int32_t>(buffer_.size());
if (new_capacity <= capacity) {
#if __OHOS__
SHERPA_ONNX_LOGE(
"new_capacity (%{public}d) <= original capacity (%{public}d). Skip it.",
new_capacity, capacity);
#else
SHERPA_ONNX_LOGE("new_capacity (%d) <= original capacity (%d). Skip it.",
new_capacity, capacity);
#endif
return;
}
int32_t size = Size();
if (size == 0) {
buffer_.resize(new_capacity);
return;
}
std::vector<float> new_buffer(new_capacity);
int32_t start = head_ % capacity;
int32_t dest = head_ % new_capacity;
if (start + size <= capacity) {
if (dest + size <= new_capacity) {
std::copy(buffer_.begin() + start, buffer_.begin() + start + size,
new_buffer.begin() + dest);
} else {
int32_t part1_size = new_capacity - dest;
// copy [start, start+part1_size] to new_buffer
std::copy(buffer_.begin() + start, buffer_.begin() + start + part1_size,
new_buffer.begin() + dest);
// copy [start+part1_size, start+size] to new_buffer
std::copy(buffer_.begin() + start + part1_size,
buffer_.begin() + start + size, new_buffer.begin());
}
} else {
int32_t part1_size = capacity - start;
int32_t part2_size = size - part1_size;
// copy [start, start+part1_size] to new_buffer
if (dest + part1_size <= new_capacity) {
std::copy(buffer_.begin() + start, buffer_.begin() + start + part1_size,
new_buffer.begin() + dest);
} else {
int32_t first_part = new_capacity - dest;
std::copy(buffer_.begin() + start, buffer_.begin() + start + first_part,
new_buffer.begin() + dest);
std::copy(buffer_.begin() + start + first_part,
buffer_.begin() + start + part1_size, new_buffer.begin());
}
int32_t new_dest = (dest + part1_size) % new_capacity;
if (new_dest + part2_size <= new_capacity) {
std::copy(buffer_.begin(), buffer_.begin() + part2_size,
new_buffer.begin() + new_dest);
} else {
int32_t first_part = new_capacity - new_dest;
std::copy(buffer_.begin(), buffer_.begin() + first_part,
new_buffer.begin() + new_dest);
std::copy(buffer_.begin() + first_part, buffer_.begin() + part2_size,
new_buffer.begin());
}
}
buffer_.swap(new_buffer);
}
void CircularBuffer::Push(const float *p, int32_t n) {
int32_t capacity = static_cast<int32_t>(buffer_.size());
int32_t size = Size();
if (n + size > capacity) {
int32_t new_capacity = std::max(capacity * 2, n + size);
#if __OHOS__
SHERPA_ONNX_LOGE(
"Overflow! n: %{public}d, size: %{public}d, n+size: %{public}d, "
"capacity: %{public}d. Increase "
"capacity to: %{public}d. (Original data is copied. No data loss!)",
n, size, n + size, capacity, new_capacity);
#else
SHERPA_ONNX_LOGE(
"Overflow! n: %d, size: %d, n+size: %d, capacity: %d. Increase "
"capacity to: %d. (Original data is copied. No data loss!)",
n, size, n + size, capacity, new_capacity);
#endif
Resize(new_capacity);
capacity = new_capacity;
}
int32_t start = tail_ % capacity;
tail_ += n;
if (start + n < capacity) {
std::copy(p, p + n, buffer_.begin() + start);
return;
}
int32_t part1_size = capacity - start;
std::copy(p, p + part1_size, buffer_.begin() + start);
std::copy(p + part1_size, p + n, buffer_.begin());
}
std::vector<float> CircularBuffer::Get(int32_t start_index, int32_t n) const {
if (start_index < head_ || start_index >= tail_) {
SHERPA_ONNX_LOGE("Invalid start_index: %d. head_: %d, tail_: %d",
start_index, head_, tail_);
return {};
}
int32_t size = Size();
if (n < 0 || n > size) {
SHERPA_ONNX_LOGE("Invalid n: %d. size: %d", n, size);
return {};
}
int32_t capacity = static_cast<int32_t>(buffer_.size());
if (start_index - head_ + n > size) {
SHERPA_ONNX_LOGE("Invalid start_index: %d and n: %d. head_: %d, size: %d",
start_index, n, head_, size);
return {};
}
int32_t start = start_index % capacity;
if (start + n < capacity) {
return {buffer_.begin() + start, buffer_.begin() + start + n};
}
std::vector<float> ans(n);
std::copy(buffer_.begin() + start, buffer_.end(), ans.begin());
int32_t part1_size = capacity - start;
int32_t part2_size = n - part1_size;
std::copy(buffer_.begin(), buffer_.begin() + part2_size,
ans.begin() + part1_size);
return ans;
}
void CircularBuffer::Pop(int32_t n) {
int32_t size = Size();
if (n < 0 || n > size) {
SHERPA_ONNX_LOGE("Invalid n: %d. size: %d", n, size);
return;
}
head_ += n;
}
} // namespace sherpa_onnx