offline-tts-matcha-model.cc
5.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// sherpa-onnx/csrc/offline-tts-matcha-model.cc
//
// Copyright (c) 2024 Xiaomi Corporation
#include "sherpa-onnx/csrc/offline-tts-matcha-model.h"
#include <algorithm>
#include <string>
#include <utility>
#include <vector>
#if __ANDROID_API__ >= 9
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif
#if __OHOS__
#include "rawfile/raw_file_manager.h"
#endif
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/session.h"
namespace sherpa_onnx {
class OfflineTtsMatchaModel::Impl {
public:
explicit Impl(const OfflineTtsModelConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_ERROR),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
auto buf = ReadFile(config.matcha.acoustic_model);
Init(buf.data(), buf.size());
}
template <typename Manager>
Impl(Manager *mgr, const OfflineTtsModelConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_ERROR),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
auto buf = ReadFile(mgr, config.matcha.acoustic_model);
Init(buf.data(), buf.size());
}
const OfflineTtsMatchaModelMetaData &GetMetaData() const {
return meta_data_;
}
Ort::Value Run(Ort::Value x, int64_t sid, float speed) {
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::vector<int64_t> x_shape = x.GetTensorTypeAndShapeInfo().GetShape();
if (x_shape[0] != 1) {
SHERPA_ONNX_LOGE("Support only batch_size == 1. Given: %d",
static_cast<int32_t>(x_shape[0]));
exit(-1);
}
int64_t len = x_shape[1];
int64_t len_shape = 1;
Ort::Value x_length =
Ort::Value::CreateTensor(memory_info, &len, 1, &len_shape, 1);
int64_t scale_shape = 1;
float noise_scale = config_.matcha.noise_scale;
float length_scale = config_.matcha.length_scale;
if (speed != 1 && speed > 0) {
length_scale = 1. / speed;
}
Ort::Value noise_scale_tensor =
Ort::Value::CreateTensor(memory_info, &noise_scale, 1, &scale_shape, 1);
Ort::Value length_scale_tensor = Ort::Value::CreateTensor(
memory_info, &length_scale, 1, &scale_shape, 1);
Ort::Value sid_tensor =
Ort::Value::CreateTensor(memory_info, &sid, 1, &scale_shape, 1);
std::vector<Ort::Value> inputs;
inputs.reserve(5);
inputs.push_back(std::move(x));
inputs.push_back(std::move(x_length));
inputs.push_back(std::move(noise_scale_tensor));
inputs.push_back(std::move(length_scale_tensor));
if (input_names_.size() == 5 && input_names_.back() == "sid") {
inputs.push_back(std::move(sid_tensor));
}
auto out =
sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
output_names_ptr_.data(), output_names_ptr_.size());
return std::move(out[0]);
}
private:
void Init(void *model_data, size_t model_data_length) {
sess_ = std::make_unique<Ort::Session>(env_, model_data, model_data_length,
sess_opts_);
GetInputNames(sess_.get(), &input_names_, &input_names_ptr_);
GetOutputNames(sess_.get(), &output_names_, &output_names_ptr_);
// get meta data
Ort::ModelMetadata meta_data = sess_->GetModelMetadata();
if (config_.debug) {
std::ostringstream os;
os << "---matcha model---\n";
PrintModelMetadata(os, meta_data);
os << "----------input names----------\n";
int32_t i = 0;
for (const auto &s : input_names_) {
os << i << " " << s << "\n";
++i;
}
os << "----------output names----------\n";
i = 0;
for (const auto &s : output_names_) {
os << i << " " << s << "\n";
++i;
}
#if __OHOS__
SHERPA_ONNX_LOGE("%{public}s\n", os.str().c_str());
#else
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
#endif
}
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
SHERPA_ONNX_READ_META_DATA(meta_data_.sample_rate, "sample_rate");
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.version, "version", 1);
SHERPA_ONNX_READ_META_DATA(meta_data_.num_speakers, "n_speakers");
SHERPA_ONNX_READ_META_DATA(meta_data_.jieba, "jieba");
SHERPA_ONNX_READ_META_DATA(meta_data_.has_espeak, "has_espeak");
SHERPA_ONNX_READ_META_DATA(meta_data_.use_eos_bos, "use_eos_bos");
SHERPA_ONNX_READ_META_DATA(meta_data_.pad_id, "pad_id");
}
private:
OfflineTtsModelConfig config_;
Ort::Env env_;
Ort::SessionOptions sess_opts_;
Ort::AllocatorWithDefaultOptions allocator_;
std::unique_ptr<Ort::Session> sess_;
std::vector<std::string> input_names_;
std::vector<const char *> input_names_ptr_;
std::vector<std::string> output_names_;
std::vector<const char *> output_names_ptr_;
OfflineTtsMatchaModelMetaData meta_data_;
};
OfflineTtsMatchaModel::OfflineTtsMatchaModel(
const OfflineTtsModelConfig &config)
: impl_(std::make_unique<Impl>(config)) {}
template <typename Manager>
OfflineTtsMatchaModel::OfflineTtsMatchaModel(
Manager *mgr, const OfflineTtsModelConfig &config)
: impl_(std::make_unique<Impl>(mgr, config)) {}
OfflineTtsMatchaModel::~OfflineTtsMatchaModel() = default;
const OfflineTtsMatchaModelMetaData &OfflineTtsMatchaModel::GetMetaData()
const {
return impl_->GetMetaData();
}
Ort::Value OfflineTtsMatchaModel::Run(Ort::Value x, int64_t sid /*= 0*/,
float speed /*= 1.0*/) const {
return impl_->Run(std::move(x), sid, speed);
}
#if __ANDROID_API__ >= 9
template OfflineTtsMatchaModel::OfflineTtsMatchaModel(
AAssetManager *mgr, const OfflineTtsModelConfig &config);
#endif
#if __OHOS__
template OfflineTtsMatchaModel::OfflineTtsMatchaModel(
NativeResourceManager *mgr, const OfflineTtsModelConfig &config);
#endif
} // namespace sherpa_onnx