NonStreamingAsrWithVadWorker.ets
5.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import { ErrorEvent, MessageEvents, ThreadWorkerGlobalScope, worker } from '@kit.ArkTS';
import {
OfflineRecognizer,
OfflineRecognizerConfig,
readWaveFromBinary,
SileroVadConfig,
Vad,
VadConfig,
} from 'sherpa_onnx';
import { Context } from '@kit.AbilityKit';
import { fileIo } from '@kit.CoreFileKit';
import { getOfflineModelConfig } from '../pages/NonStreamingAsrModels';
const workerPort: ThreadWorkerGlobalScope = worker.workerPort;
let recognizer: OfflineRecognizer;
let vad: Vad; // vad for decoding files
function initVad(context: Context): Vad {
let mgr = context.resourceManager;
const config = new VadConfig(
new SileroVadConfig(
'silero_vad.onnx',
0.5,
0.25,
0.5,
512,
),
16000,
true,
1,
);
const bufferSizeInSeconds = 60;
return new Vad(config, bufferSizeInSeconds, mgr);
}
function initNonStreamingAsr(context: Context): OfflineRecognizer {
let mgr = context.resourceManager;
const config = new OfflineRecognizerConfig();
// Note that you can switch to a new model by changing type
//
// If you use type = 2, which means you will use
// sherpa-onnx-whisper-tiny.en
// we assume you have the following folder structure in you resources/rawfile
/*
(py38) fangjuns-MacBook-Pro:main fangjun$ pwd
/Users/fangjun/open-source/sherpa-onnx/harmony-os/SherpaOnnxVadAsr/entry/src/main
(py38) fangjuns-MacBook-Pro:main fangjun$ tree resources/rawfile/
resources/rawfile/
├── sherpa-onnx-whisper-tiny.en
│ ├── README.md
│ ├── tiny.en-decoder.int8.onnx
│ ├── tiny.en-encoder.int8.onnx
│ └── tiny.en-tokens.txt
└── silero_vad.onnx
1 directory, 5 files
*/
const type = 2;
config.modelConfig = getOfflineModelConfig(type);
config.modelConfig.debug = true;
return new OfflineRecognizer(config, mgr)
}
function decode(filename: string): string {
vad.reset();
const fp = fileIo.openSync(filename);
const stat = fileIo.statSync(fp.fd);
const arrayBuffer = new ArrayBuffer(stat.size);
fileIo.readSync(fp.fd, arrayBuffer);
const data = new Uint8Array(arrayBuffer);
const wave = readWaveFromBinary(data);
console.log(`sample rate ${wave.sampleRate}`);
console.log(`samples length ${wave.samples.length}`);
const resultList: string[] = [];
const windowSize = vad.config.sileroVad.windowSize;
for (let i = 0; i < wave.samples.length; i += windowSize) {
const thisWindow = wave.samples.subarray(i, i + windowSize)
vad.acceptWaveform(thisWindow);
if (i + windowSize >= wave.samples.length) {
vad.flush();
}
while (!vad.isEmpty()) {
const segment = vad.front();
const _startTime = (segment.start / wave.sampleRate);
const _endTime = _startTime + segment.samples.length / wave.sampleRate;
if (_endTime - _startTime < 0.2) {
vad.pop();
continue;
}
const startTime = _startTime.toFixed(2);
const endTime = _endTime.toFixed(2);
const progress = (segment.start + segment.samples.length) / wave.samples.length * 100;
workerPort.postMessage({ 'msgType': 'non-streaming-asr-vad-decode-progress', progress });
const stream = recognizer.createStream();
stream.acceptWaveform({ samples: segment.samples, sampleRate: wave.sampleRate });
recognizer.decode(stream);
const result = recognizer.getResult(stream);
const text = `${startTime} -- ${endTime} ${result.text}`
resultList.push(text);
console.log(`partial result ${text}`);
workerPort.postMessage({ 'msgType': 'non-streaming-asr-vad-decode-partial', text });
vad.pop();
}
}
return resultList.join('\n\n');
}
/**
* Defines the event handler to be called when the worker thread receives a message sent by the host thread.
* The event handler is executed in the worker thread.
*
* @param e message data
*/
workerPort.onmessage = (e: MessageEvents) => {
const msgType = e.data['msgType'] as string;
console.log(`msg-type: ${msgType}`)
if (msgType == 'init-vad' && !vad) {
const context = e.data['context'] as Context;
vad = initVad(context);
console.log('init vad done');
workerPort.postMessage({ 'msgType': 'init-vad-done' });
}
if (msgType == 'init-non-streaming-asr' && !recognizer) {
const context = e.data['context'] as Context;
recognizer = initNonStreamingAsr(context);
console.log('init non streaming ASR done');
workerPort.postMessage({ 'msgType': 'init-non-streaming-asr-done' });
}
if (msgType == 'non-streaming-asr-vad-decode') {
const filename = e.data['filename'] as string;
console.log(`decoding ${filename}`);
try {
const text = decode(filename);
workerPort.postMessage({ msgType: 'non-streaming-asr-vad-decode-done', text });
} catch (e) {
workerPort.postMessage({ msgType: 'non-streaming-asr-vad-decode-error', text: `Failed to decode ${filename}` });
}
workerPort.postMessage({ 'msgType': 'non-streaming-asr-vad-decode-progress', progress: 100 });
}
}
/**
* Defines the event handler to be called when the worker receives a message that cannot be deserialized.
* The event handler is executed in the worker thread.
*
* @param e message data
*/
workerPort.onmessageerror = (e: MessageEvents) => {
}
/**
* Defines the event handler to be called when an exception occurs during worker execution.
* The event handler is executed in the worker thread.
*
* @param e error message
*/
workerPort.onerror = (e: ErrorEvent) => {
}