online_recognizer.py 33.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
# Copyright (c)  2023  Xiaomi Corporation
from pathlib import Path
from typing import List, Optional

from _sherpa_onnx import (
    CudaConfig,
    EndpointConfig,
    FeatureExtractorConfig,
    HomophoneReplacerConfig,
    OnlineCtcFstDecoderConfig,
    OnlineLMConfig,
    OnlineModelConfig,
    OnlineNeMoCtcModelConfig,
    OnlineParaformerModelConfig,
)
from _sherpa_onnx import OnlineRecognizer as _Recognizer
from _sherpa_onnx import (
    OnlineRecognizerConfig,
    OnlineRecognizerResult,
    OnlineStream,
    OnlineTransducerModelConfig,
    OnlineWenetCtcModelConfig,
    OnlineZipformer2CtcModelConfig,
    ProviderConfig,
    TensorrtConfig,
)


def _assert_file_exists(f: str):
    assert Path(f).is_file(), f"{f} does not exist"


class OnlineRecognizer(object):
    """A class for streaming speech recognition.

    Please refer to the following files for usages
     - https://github.com/k2-fsa/sherpa-onnx/blob/master/sherpa-onnx/python/tests/test_online_recognizer.py
     - https://github.com/k2-fsa/sherpa-onnx/blob/master/python-api-examples/online-decode-files.py
    """

    @classmethod
    def from_transducer(
        cls,
        tokens: str,
        encoder: str,
        decoder: str,
        joiner: str,
        num_threads: int = 2,
        sample_rate: float = 16000,
        feature_dim: int = 80,
        low_freq: float = 20.0,
        high_freq: float = -400.0,
        dither: float = 0.0,
        normalize_samples: bool = True,
        snip_edges: bool = False,
        enable_endpoint_detection: bool = False,
        rule1_min_trailing_silence: float = 2.4,
        rule2_min_trailing_silence: float = 1.2,
        rule3_min_utterance_length: float = 20.0,
        decoding_method: str = "greedy_search",
        max_active_paths: int = 4,
        hotwords_score: float = 1.5,
        blank_penalty: float = 0.0,
        hotwords_file: str = "",
        model_type: str = "",
        modeling_unit: str = "cjkchar",
        bpe_vocab: str = "",
        lm: str = "",
        lm_scale: float = 0.1,
        lm_shallow_fusion: bool = True,
        temperature_scale: float = 2.0,
        reset_encoder: bool = False,
        debug: bool = False,
        rule_fsts: str = "",
        rule_fars: str = "",
        provider: str = "cpu",
        device: int = 0,
        cudnn_conv_algo_search: int = 1,
        trt_max_workspace_size: int = 2147483647,
        trt_max_partition_iterations: int = 10,
        trt_min_subgraph_size: int = 5,
        trt_fp16_enable: bool = True,
        trt_detailed_build_log: bool = False,
        trt_engine_cache_enable: bool = True,
        trt_timing_cache_enable: bool = True,
        trt_engine_cache_path: str = "",
        trt_timing_cache_path: str = "",
        trt_dump_subgraphs: bool = False,
        hr_dict_dir: str = "",
        hr_rule_fsts: str = "",
        hr_lexicon: str = "",
        lodr_fst: str = "",
        lodr_scale: float = 0.0,
    ):
        """
        Please refer to
        `<https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html>`_
        to download pre-trained models for different languages, e.g., Chinese,
        English, etc.

        Args:
          tokens:
            Path to ``tokens.txt``. Each line in ``tokens.txt`` contains two
            columns::

                symbol integer_id

          encoder:
            Path to ``encoder.onnx``.
          decoder:
            Path to ``decoder.onnx``.
          joiner:
            Path to ``joiner.onnx``.
          num_threads:
            Number of threads for neural network computation.
          sample_rate:
            Sample rate of the training data used to train the model.
          feature_dim:
            Dimension of the feature used to train the model.
          low_freq:
            Low cutoff frequency for mel bins in feature extraction.
          high_freq:
            High cutoff frequency for mel bins in feature extraction
            (if <= 0, offset from Nyquist)
          dither:
            Dithering constant (0.0 means no dither).
            By default the audio samples are in range [-1,+1],
            so dithering constant 0.00003 is a good value,
            equivalent to the default 1.0 from kaldi
          normalize_samples:
            True for +/- 1.0 range of audio samples (default, zipformer feats),
            False for +/- 32k samples (ebranchformer features).
          snip_edges:
            handling of end of audio signal in kaldi feature extraction.
            If true, end effects will be handled by outputting only frames that
            completely fit in the file, and the number of frames depends on the
            frame-length.  If false, the number of frames depends only on the
            frame-shift, and we reflect the data at the ends.
          enable_endpoint_detection:
            True to enable endpoint detection. False to disable endpoint
            detection.
          rule1_min_trailing_silence:
            Used only when enable_endpoint_detection is True. If the duration
            of trailing silence in seconds is larger than this value, we assume
            an endpoint is detected.
          rule2_min_trailing_silence:
            Used only when enable_endpoint_detection is True. If we have decoded
            something that is nonsilence and if the duration of trailing silence
            in seconds is larger than this value, we assume an endpoint is
            detected.
          rule3_min_utterance_length:
            Used only when enable_endpoint_detection is True. If the utterance
            length in seconds is larger than this value, we assume an endpoint
            is detected.
          decoding_method:
            Valid values are greedy_search, modified_beam_search.
          max_active_paths:
            Use only when decoding_method is modified_beam_search. It specifies
            the maximum number of active paths during beam search.
          blank_penalty:
            The penalty applied on blank symbol during decoding.
          hotwords_file:
            The file containing hotwords, one words/phrases per line, and for each
            phrase the bpe/cjkchar are separated by a space.
          hotwords_score:
            The hotword score of each token for biasing word/phrase. Used only if
            hotwords_file is given with modified_beam_search as decoding method.
          temperature_scale:
            Temperature scaling for output symbol confidence estiamation.
            It affects only confidence values, the decoding uses the original
            logits without temperature.
          reset_encoder:
            True to reset `encoder_state` on an endpoint after empty segment.
            Done in `Reset()` method, after an endpoint was detected,
            currently only in `OnlineRecognizerTransducerImpl`.
          model_type:
            Online transducer model type. Valid values are: conformer, lstm,
            zipformer, zipformer2. All other values lead to loading the model twice.
          modeling_unit:
            The modeling unit of the model, commonly used units are bpe, cjkchar,
            cjkchar+bpe, etc. Currently, it is needed only when hotwords are
            provided, we need it to encode the hotwords into token sequence.
          bpe_vocab:
            The vocabulary generated by google's sentencepiece program.
            It is a file has two columns, one is the token, the other is
            the log probability, you can get it from the directory where
            your bpe model is generated. Only used when hotwords provided
            and the modeling unit is bpe or cjkchar+bpe.
          rule_fsts:
            If not empty, it specifies fsts for inverse text normalization.
            If there are multiple fsts, they are separated by a comma.
          rule_fars:
            If not empty, it specifies fst archives for inverse text normalization.
            If there are multiple archives, they are separated by a comma.
          provider:
            onnxruntime execution providers. Valid values are: cpu, cuda, coreml.
          device:
            onnxruntime cuda device index.
          cudnn_conv_algo_search:
            onxrt CuDNN convolution search algorithm selection. CUDA EP
          trt_max_workspace_size:
            Set TensorRT EP GPU memory usage limit. TensorRT EP
          trt_max_partition_iterations:
            Limit partitioning iterations for model conversion. TensorRT EP
          trt_min_subgraph_size:
            Set minimum size for subgraphs in partitioning. TensorRT EP
          trt_fp16_enable: bool = True,
            Enable FP16 precision for faster performance. TensorRT EP
          trt_detailed_build_log: bool = False,
            Enable detailed logging of build steps. TensorRT EP
          trt_engine_cache_enable: bool = True,
            Enable caching of TensorRT engines. TensorRT EP
          trt_timing_cache_enable: bool = True,
            "Enable use of timing cache to speed up builds." TensorRT EP
          trt_engine_cache_path: str ="",
            "Set path to store cached TensorRT engines." TensorRT EP
          trt_timing_cache_path: str ="",
            "Set path for storing timing cache." TensorRT EP
          trt_dump_subgraphs: bool = False,
            "Dump optimized subgraphs for debugging." TensorRT EP
          lodr_fst:
            Path to the LODR FST file in binary format. If empty, LODR is disabled.
          lodr_scale:
            Scale factor for LODR rescoring. Only used when lodr_fst is provided.
        """
        self = cls.__new__(cls)
        _assert_file_exists(tokens)
        _assert_file_exists(encoder)
        _assert_file_exists(decoder)
        _assert_file_exists(joiner)

        assert num_threads > 0, num_threads

        transducer_config = OnlineTransducerModelConfig(
            encoder=encoder,
            decoder=decoder,
            joiner=joiner,
        )

        cuda_config = CudaConfig(
            cudnn_conv_algo_search=cudnn_conv_algo_search,
        )

        trt_config = TensorrtConfig(
            trt_max_workspace_size=trt_max_workspace_size,
            trt_max_partition_iterations=trt_max_partition_iterations,
            trt_min_subgraph_size=trt_min_subgraph_size,
            trt_fp16_enable=trt_fp16_enable,
            trt_detailed_build_log=trt_detailed_build_log,
            trt_engine_cache_enable=trt_engine_cache_enable,
            trt_timing_cache_enable=trt_timing_cache_enable,
            trt_engine_cache_path=trt_engine_cache_path,
            trt_timing_cache_path=trt_timing_cache_path,
            trt_dump_subgraphs=trt_dump_subgraphs,
        )

        provider_config = ProviderConfig(
            trt_config=trt_config,
            cuda_config=cuda_config,
            provider=provider,
            device=device,
        )

        model_config = OnlineModelConfig(
            transducer=transducer_config,
            tokens=tokens,
            num_threads=num_threads,
            provider_config=provider_config,
            model_type=model_type,
            modeling_unit=modeling_unit,
            bpe_vocab=bpe_vocab,
            debug=debug,
        )

        feat_config = FeatureExtractorConfig(
            sampling_rate=sample_rate,
            normalize_samples=normalize_samples,
            snip_edges=snip_edges,
            feature_dim=feature_dim,
            low_freq=low_freq,
            high_freq=high_freq,
            dither=dither,
        )

        endpoint_config = EndpointConfig(
            rule1_min_trailing_silence=rule1_min_trailing_silence,
            rule2_min_trailing_silence=rule2_min_trailing_silence,
            rule3_min_utterance_length=rule3_min_utterance_length,
        )

        if len(hotwords_file) > 0 and decoding_method != "modified_beam_search":
            raise ValueError(
                "Please use --decoding-method=modified_beam_search when using "
                f"--hotwords-file. Currently given: {decoding_method}"
            )

        if lm and decoding_method != "modified_beam_search":
            raise ValueError(
                "Please use --decoding-method=modified_beam_search when using "
                f"--lm. Currently given: {decoding_method}"
            )

        lm_config = OnlineLMConfig(
            model=lm,
            scale=lm_scale,
            shallow_fusion=lm_shallow_fusion,
            lodr_fst=lodr_fst,
            lodr_scale=lodr_scale,
        )

        recognizer_config = OnlineRecognizerConfig(
            feat_config=feat_config,
            model_config=model_config,
            lm_config=lm_config,
            endpoint_config=endpoint_config,
            enable_endpoint=enable_endpoint_detection,
            decoding_method=decoding_method,
            max_active_paths=max_active_paths,
            hotwords_score=hotwords_score,
            hotwords_file=hotwords_file,
            blank_penalty=blank_penalty,
            temperature_scale=temperature_scale,
            rule_fsts=rule_fsts,
            rule_fars=rule_fars,
            reset_encoder=reset_encoder,
            hr=HomophoneReplacerConfig(
                dict_dir=hr_dict_dir,
                lexicon=hr_lexicon,
                rule_fsts=hr_rule_fsts,
            ),
        )

        self.recognizer = _Recognizer(recognizer_config)
        self.config = recognizer_config
        return self

    @classmethod
    def from_paraformer(
        cls,
        tokens: str,
        encoder: str,
        decoder: str,
        num_threads: int = 2,
        sample_rate: float = 16000,
        feature_dim: int = 80,
        enable_endpoint_detection: bool = False,
        rule1_min_trailing_silence: float = 2.4,
        rule2_min_trailing_silence: float = 1.2,
        rule3_min_utterance_length: float = 20.0,
        decoding_method: str = "greedy_search",
        provider: str = "cpu",
        debug: bool = False,
        rule_fsts: str = "",
        rule_fars: str = "",
        device: int = 0,
        hr_dict_dir: str = "",
        hr_rule_fsts: str = "",
        hr_lexicon: str = "",
    ):
        """
        Please refer to
        `<https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html>`_
        to download pre-trained models for different languages, e.g., Chinese,
        English, etc.

        Args:
          tokens:
            Path to ``tokens.txt``. Each line in ``tokens.txt`` contains two
            columns::

                symbol integer_id

          encoder:
            Path to ``encoder.onnx``.
          decoder:
            Path to ``decoder.onnx``.
          num_threads:
            Number of threads for neural network computation.
          sample_rate:
            Sample rate of the training data used to train the model.
          feature_dim:
            Dimension of the feature used to train the model.
          enable_endpoint_detection:
            True to enable endpoint detection. False to disable endpoint
            detection.
          rule1_min_trailing_silence:
            Used only when enable_endpoint_detection is True. If the duration
            of trailing silence in seconds is larger than this value, we assume
            an endpoint is detected.
          rule2_min_trailing_silence:
            Used only when enable_endpoint_detection is True. If we have decoded
            something that is nonsilence and if the duration of trailing silence
            in seconds is larger than this value, we assume an endpoint is
            detected.
          rule3_min_utterance_length:
            Used only when enable_endpoint_detection is True. If the utterance
            length in seconds is larger than this value, we assume an endpoint
            is detected.
          decoding_method:
            The only valid value is greedy_search.
          provider:
            onnxruntime execution providers. Valid values are: cpu, cuda, coreml.
          rule_fsts:
            If not empty, it specifies fsts for inverse text normalization.
            If there are multiple fsts, they are separated by a comma.
          rule_fars:
            If not empty, it specifies fst archives for inverse text normalization.
            If there are multiple archives, they are separated by a comma.
          device:
            onnxruntime cuda device index.
        """
        self = cls.__new__(cls)
        _assert_file_exists(tokens)
        _assert_file_exists(encoder)
        _assert_file_exists(decoder)

        assert num_threads > 0, num_threads

        paraformer_config = OnlineParaformerModelConfig(
            encoder=encoder,
            decoder=decoder,
        )

        provider_config = ProviderConfig(
            provider=provider,
            device=device,
        )

        model_config = OnlineModelConfig(
            paraformer=paraformer_config,
            tokens=tokens,
            num_threads=num_threads,
            provider_config=provider_config,
            model_type="paraformer",
            debug=debug,
        )

        feat_config = FeatureExtractorConfig(
            sampling_rate=sample_rate,
            feature_dim=feature_dim,
        )

        endpoint_config = EndpointConfig(
            rule1_min_trailing_silence=rule1_min_trailing_silence,
            rule2_min_trailing_silence=rule2_min_trailing_silence,
            rule3_min_utterance_length=rule3_min_utterance_length,
        )

        recognizer_config = OnlineRecognizerConfig(
            feat_config=feat_config,
            model_config=model_config,
            endpoint_config=endpoint_config,
            enable_endpoint=enable_endpoint_detection,
            decoding_method=decoding_method,
            rule_fsts=rule_fsts,
            rule_fars=rule_fars,
            hr=HomophoneReplacerConfig(
                dict_dir=hr_dict_dir,
                lexicon=hr_lexicon,
                rule_fsts=hr_rule_fsts,
            ),
        )

        self.recognizer = _Recognizer(recognizer_config)
        self.config = recognizer_config
        return self

    @classmethod
    def from_zipformer2_ctc(
        cls,
        tokens: str,
        model: str,
        num_threads: int = 2,
        sample_rate: float = 16000,
        feature_dim: int = 80,
        enable_endpoint_detection: bool = False,
        rule1_min_trailing_silence: float = 2.4,
        rule2_min_trailing_silence: float = 1.2,
        rule3_min_utterance_length: float = 20.0,
        decoding_method: str = "greedy_search",
        ctc_graph: str = "",
        ctc_max_active: int = 3000,
        provider: str = "cpu",
        debug: bool = False,
        rule_fsts: str = "",
        rule_fars: str = "",
        device: int = 0,
        hr_dict_dir: str = "",
        hr_rule_fsts: str = "",
        hr_lexicon: str = "",
    ):
        """
        Please refer to
        `<https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-ctc/index.html>`_
        to download pre-trained models for different languages, e.g., Chinese,
        English, etc.

        Args:
          tokens:
            Path to ``tokens.txt``. Each line in ``tokens.txt`` contains two
            columns::

                symbol integer_id

          model:
            Path to ``model.onnx``.
          num_threads:
            Number of threads for neural network computation.
          sample_rate:
            Sample rate of the training data used to train the model.
          feature_dim:
            Dimension of the feature used to train the model.
          enable_endpoint_detection:
            True to enable endpoint detection. False to disable endpoint
            detection.
          rule1_min_trailing_silence:
            Used only when enable_endpoint_detection is True. If the duration
            of trailing silence in seconds is larger than this value, we assume
            an endpoint is detected.
          rule2_min_trailing_silence:
            Used only when enable_endpoint_detection is True. If we have decoded
            something that is nonsilence and if the duration of trailing silence
            in seconds is larger than this value, we assume an endpoint is
            detected.
          rule3_min_utterance_length:
            Used only when enable_endpoint_detection is True. If the utterance
            length in seconds is larger than this value, we assume an endpoint
            is detected.
          decoding_method:
            The only valid value is greedy_search.
          ctc_graph:
            If not empty, decoding_method is ignored. It contains the path to
            H.fst, HL.fst, or HLG.fst
          ctc_max_active:
            Used only when ctc_graph is not empty. It specifies the maximum
            active paths at a time.
          provider:
            onnxruntime execution providers. Valid values are: cpu, cuda, coreml.
          rule_fsts:
            If not empty, it specifies fsts for inverse text normalization.
            If there are multiple fsts, they are separated by a comma.
          rule_fars:
            If not empty, it specifies fst archives for inverse text normalization.
            If there are multiple archives, they are separated by a comma.
          device:
            onnxruntime cuda device index.
        """
        self = cls.__new__(cls)
        _assert_file_exists(tokens)
        _assert_file_exists(model)

        assert num_threads > 0, num_threads

        zipformer2_ctc_config = OnlineZipformer2CtcModelConfig(model=model)

        provider_config = ProviderConfig(
            provider=provider,
            device=device,
        )

        model_config = OnlineModelConfig(
            zipformer2_ctc=zipformer2_ctc_config,
            tokens=tokens,
            num_threads=num_threads,
            provider_config=provider_config,
            debug=debug,
        )

        feat_config = FeatureExtractorConfig(
            sampling_rate=sample_rate,
            feature_dim=feature_dim,
        )

        endpoint_config = EndpointConfig(
            rule1_min_trailing_silence=rule1_min_trailing_silence,
            rule2_min_trailing_silence=rule2_min_trailing_silence,
            rule3_min_utterance_length=rule3_min_utterance_length,
        )

        ctc_fst_decoder_config = OnlineCtcFstDecoderConfig(
            graph=ctc_graph,
            max_active=ctc_max_active,
        )

        recognizer_config = OnlineRecognizerConfig(
            feat_config=feat_config,
            model_config=model_config,
            endpoint_config=endpoint_config,
            ctc_fst_decoder_config=ctc_fst_decoder_config,
            enable_endpoint=enable_endpoint_detection,
            decoding_method=decoding_method,
            rule_fsts=rule_fsts,
            rule_fars=rule_fars,
            hr=HomophoneReplacerConfig(
                dict_dir=hr_dict_dir,
                lexicon=hr_lexicon,
                rule_fsts=hr_rule_fsts,
            ),
        )

        self.recognizer = _Recognizer(recognizer_config)
        self.config = recognizer_config
        return self

    @classmethod
    def from_nemo_ctc(
        cls,
        tokens: str,
        model: str,
        num_threads: int = 2,
        sample_rate: float = 16000,
        feature_dim: int = 80,
        enable_endpoint_detection: bool = False,
        rule1_min_trailing_silence: float = 2.4,
        rule2_min_trailing_silence: float = 1.2,
        rule3_min_utterance_length: float = 20.0,
        decoding_method: str = "greedy_search",
        provider: str = "cpu",
        debug: bool = False,
        rule_fsts: str = "",
        rule_fars: str = "",
        device: int = 0,
        hr_dict_dir: str = "",
        hr_rule_fsts: str = "",
        hr_lexicon: str = "",
    ):
        """
        Please refer to
        `<https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models>`_
        to download pre-trained models.

        Args:
          tokens:
            Path to ``tokens.txt``. Each line in ``tokens.txt`` contains two
            columns::

                symbol integer_id

          model:
            Path to ``model.onnx``.
          num_threads:
            Number of threads for neural network computation.
          sample_rate:
            Sample rate of the training data used to train the model.
          feature_dim:
            Dimension of the feature used to train the model.
          enable_endpoint_detection:
            True to enable endpoint detection. False to disable endpoint
            detection.
          rule1_min_trailing_silence:
            Used only when enable_endpoint_detection is True. If the duration
            of trailing silence in seconds is larger than this value, we assume
            an endpoint is detected.
          rule2_min_trailing_silence:
            Used only when enable_endpoint_detection is True. If we have decoded
            something that is nonsilence and if the duration of trailing silence
            in seconds is larger than this value, we assume an endpoint is
            detected.
          rule3_min_utterance_length:
            Used only when enable_endpoint_detection is True. If the utterance
            length in seconds is larger than this value, we assume an endpoint
            is detected.
          decoding_method:
            The only valid value is greedy_search.
          provider:
            onnxruntime execution providers. Valid values are: cpu, cuda, coreml.
          debug:
            True to show meta data in the model.
          rule_fsts:
            If not empty, it specifies fsts for inverse text normalization.
            If there are multiple fsts, they are separated by a comma.
          rule_fars:
            If not empty, it specifies fst archives for inverse text normalization.
            If there are multiple archives, they are separated by a comma.
          device:
            onnxruntime cuda device index.
        """
        self = cls.__new__(cls)
        _assert_file_exists(tokens)
        _assert_file_exists(model)

        assert num_threads > 0, num_threads

        nemo_ctc_config = OnlineNeMoCtcModelConfig(
            model=model,
        )

        provider_config = ProviderConfig(
            provider=provider,
            device=device,
        )

        model_config = OnlineModelConfig(
            nemo_ctc=nemo_ctc_config,
            tokens=tokens,
            num_threads=num_threads,
            provider_config=provider_config,
            debug=debug,
        )

        feat_config = FeatureExtractorConfig(
            sampling_rate=sample_rate,
            feature_dim=feature_dim,
        )

        endpoint_config = EndpointConfig(
            rule1_min_trailing_silence=rule1_min_trailing_silence,
            rule2_min_trailing_silence=rule2_min_trailing_silence,
            rule3_min_utterance_length=rule3_min_utterance_length,
        )

        recognizer_config = OnlineRecognizerConfig(
            feat_config=feat_config,
            model_config=model_config,
            endpoint_config=endpoint_config,
            enable_endpoint=enable_endpoint_detection,
            decoding_method=decoding_method,
            rule_fsts=rule_fsts,
            rule_fars=rule_fars,
            hr=HomophoneReplacerConfig(
                dict_dir=hr_dict_dir,
                lexicon=hr_lexicon,
                rule_fsts=hr_rule_fsts,
            ),
        )

        self.recognizer = _Recognizer(recognizer_config)
        self.config = recognizer_config
        return self

    @classmethod
    def from_wenet_ctc(
        cls,
        tokens: str,
        model: str,
        chunk_size: int = 16,
        num_left_chunks: int = 4,
        num_threads: int = 2,
        sample_rate: float = 16000,
        feature_dim: int = 80,
        enable_endpoint_detection: bool = False,
        rule1_min_trailing_silence: float = 2.4,
        rule2_min_trailing_silence: float = 1.2,
        rule3_min_utterance_length: float = 20.0,
        decoding_method: str = "greedy_search",
        provider: str = "cpu",
        debug: bool = False,
        rule_fsts: str = "",
        rule_fars: str = "",
        device: int = 0,
        hr_dict_dir: str = "",
        hr_rule_fsts: str = "",
        hr_lexicon: str = "",
    ):
        """
        Please refer to
        `<https://k2-fsa.github.io/sherpa/onnx/pretrained_models/wenet/index.html>`_
        to download pre-trained models for different languages, e.g., Chinese,
        English, etc.

        Args:
          tokens:
            Path to ``tokens.txt``. Each line in ``tokens.txt`` contains two
            columns::

                symbol integer_id

          model:
            Path to ``model.onnx``.
          chunk_size:
            The --chunk-size parameter from WeNet.
          num_left_chunks:
            The --num-left-chunks parameter from WeNet.
          num_threads:
            Number of threads for neural network computation.
          sample_rate:
            Sample rate of the training data used to train the model.
          feature_dim:
            Dimension of the feature used to train the model.
          enable_endpoint_detection:
            True to enable endpoint detection. False to disable endpoint
            detection.
          rule1_min_trailing_silence:
            Used only when enable_endpoint_detection is True. If the duration
            of trailing silence in seconds is larger than this value, we assume
            an endpoint is detected.
          rule2_min_trailing_silence:
            Used only when enable_endpoint_detection is True. If we have decoded
            something that is nonsilence and if the duration of trailing silence
            in seconds is larger than this value, we assume an endpoint is
            detected.
          rule3_min_utterance_length:
            Used only when enable_endpoint_detection is True. If the utterance
            length in seconds is larger than this value, we assume an endpoint
            is detected.
          decoding_method:
            The only valid value is greedy_search.
          provider:
            onnxruntime execution providers. Valid values are: cpu, cuda, coreml.
          rule_fsts:
            If not empty, it specifies fsts for inverse text normalization.
            If there are multiple fsts, they are separated by a comma.
          rule_fars:
            If not empty, it specifies fst archives for inverse text normalization.
            If there are multiple archives, they are separated by a comma.
          device:
            onnxruntime cuda device index.
        """
        self = cls.__new__(cls)
        _assert_file_exists(tokens)
        _assert_file_exists(model)

        assert num_threads > 0, num_threads

        wenet_ctc_config = OnlineWenetCtcModelConfig(
            model=model,
            chunk_size=chunk_size,
            num_left_chunks=num_left_chunks,
        )

        provider_config = ProviderConfig(
            provider=provider,
            device=device,
        )

        model_config = OnlineModelConfig(
            wenet_ctc=wenet_ctc_config,
            tokens=tokens,
            num_threads=num_threads,
            provider_config=provider_config,
            debug=debug,
        )

        feat_config = FeatureExtractorConfig(
            sampling_rate=sample_rate,
            feature_dim=feature_dim,
        )

        endpoint_config = EndpointConfig(
            rule1_min_trailing_silence=rule1_min_trailing_silence,
            rule2_min_trailing_silence=rule2_min_trailing_silence,
            rule3_min_utterance_length=rule3_min_utterance_length,
        )

        recognizer_config = OnlineRecognizerConfig(
            feat_config=feat_config,
            model_config=model_config,
            endpoint_config=endpoint_config,
            enable_endpoint=enable_endpoint_detection,
            decoding_method=decoding_method,
            rule_fsts=rule_fsts,
            rule_fars=rule_fars,
            hr=HomophoneReplacerConfig(
                dict_dir=hr_dict_dir,
                lexicon=hr_lexicon,
                rule_fsts=hr_rule_fsts,
            ),
        )

        self.recognizer = _Recognizer(recognizer_config)
        self.config = recognizer_config
        return self

    def create_stream(self, hotwords: Optional[str] = None):
        if hotwords is None:
            return self.recognizer.create_stream()
        else:
            return self.recognizer.create_stream(hotwords)

    def decode_stream(self, s: OnlineStream):
        self.recognizer.decode_stream(s)

    def decode_streams(self, ss: List[OnlineStream]):
        self.recognizer.decode_streams(ss)

    def is_ready(self, s: OnlineStream) -> bool:
        return self.recognizer.is_ready(s)

    def get_result_all(self, s: OnlineStream) -> OnlineRecognizerResult:
        return self.recognizer.get_result(s)

    def get_result(self, s: OnlineStream) -> str:
        return self.recognizer.get_result(s).text.strip()

    def get_result_as_json_string(self, s: OnlineStream) -> str:
        return self.recognizer.get_result(s).as_json_string()

    def tokens(self, s: OnlineStream) -> List[str]:
        return self.recognizer.get_result(s).tokens

    def timestamps(self, s: OnlineStream) -> List[float]:
        return self.recognizer.get_result(s).timestamps

    def start_time(self, s: OnlineStream) -> float:
        return self.recognizer.get_result(s).start_time

    def ys_probs(self, s: OnlineStream) -> List[float]:
        return self.recognizer.get_result(s).ys_probs

    def lm_probs(self, s: OnlineStream) -> List[float]:
        return self.recognizer.get_result(s).lm_probs

    def context_scores(self, s: OnlineStream) -> List[float]:
        return self.recognizer.get_result(s).context_scores

    def is_endpoint(self, s: OnlineStream) -> bool:
        return self.recognizer.is_endpoint(s)

    def reset(self, s: OnlineStream) -> bool:
        return self.recognizer.reset(s)