online-recognizer.cc 3.8 KB
// sherpa-onnx/csrc/online-recognizer.cc
//
// Copyright (c)  2023  Xiaomi Corporation

#include "sherpa-onnx/csrc/online-recognizer.h"

#include <assert.h>

#include <memory>
#include <sstream>
#include <utility>
#include <vector>

#include "sherpa-onnx/csrc/online-transducer-decoder.h"
#include "sherpa-onnx/csrc/online-transducer-greedy-search-decoder.h"
#include "sherpa-onnx/csrc/online-transducer-model.h"
#include "sherpa-onnx/csrc/symbol-table.h"

namespace sherpa_onnx {

static OnlineRecognizerResult Convert(const OnlineTransducerDecoderResult &src,
                                      const SymbolTable &sym_table) {
  std::string text;
  for (auto t : src.tokens) {
    text += sym_table[t];
  }

  OnlineRecognizerResult ans;
  ans.text = std::move(text);
  return ans;
}

std::string OnlineRecognizerConfig::ToString() const {
  std::ostringstream os;

  os << "OnlineRecognizerConfig(";
  os << "feat_config=" << feat_config.ToString() << ", ";
  os << "model_config=" << model_config.ToString() << ", ";
  os << "tokens=\"" << tokens << "\")";

  return os.str();
}

class OnlineRecognizer::Impl {
 public:
  explicit Impl(const OnlineRecognizerConfig &config)
      : config_(config),
        model_(OnlineTransducerModel::Create(config.model_config)),
        sym_(config.tokens) {
    decoder_ =
        std::make_unique<OnlineTransducerGreedySearchDecoder>(model_.get());
  }

  std::unique_ptr<OnlineStream> CreateStream() const {
    auto stream = std::make_unique<OnlineStream>(config_.feat_config);
    stream->SetResult(decoder_->GetEmptyResult());
    stream->SetStates(model_->GetEncoderInitStates());
    return stream;
  }

  bool IsReady(OnlineStream *s) const {
    return s->GetNumProcessedFrames() + model_->ChunkSize() <
           s->NumFramesReady();
  }

  void DecodeStreams(OnlineStream **ss, int32_t n) {
    if (n != 1) {
      fprintf(stderr, "only n == 1 is implemented\n");
      exit(-1);
    }
    OnlineStream *s = ss[0];
    assert(IsReady(s));

    int32_t chunk_size = model_->ChunkSize();
    int32_t chunk_shift = model_->ChunkShift();

    int32_t feature_dim = s->FeatureDim();

    std::array<int64_t, 3> x_shape{1, chunk_size, feature_dim};

    auto memory_info =
        Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);

    std::vector<float> features =
        s->GetFrames(s->GetNumProcessedFrames(), chunk_size);

    s->GetNumProcessedFrames() += chunk_shift;

    Ort::Value x =
        Ort::Value::CreateTensor(memory_info, features.data(), features.size(),
                                 x_shape.data(), x_shape.size());

    auto pair = model_->RunEncoder(std::move(x), s->GetStates());

    s->SetStates(std::move(pair.second));
    std::vector<OnlineTransducerDecoderResult> results = {s->GetResult()};

    decoder_->Decode(std::move(pair.first), &results);
    s->SetResult(results[0]);
  }

  OnlineRecognizerResult GetResult(OnlineStream *s) {
    OnlineTransducerDecoderResult decoder_result = s->GetResult();
    decoder_->StripLeadingBlanks(&decoder_result);

    return Convert(decoder_result, sym_);
  }

 private:
  OnlineRecognizerConfig config_;
  std::unique_ptr<OnlineTransducerModel> model_;
  std::unique_ptr<OnlineTransducerDecoder> decoder_;
  SymbolTable sym_;
};

OnlineRecognizer::OnlineRecognizer(const OnlineRecognizerConfig &config)
    : impl_(std::make_unique<Impl>(config)) {}
OnlineRecognizer::~OnlineRecognizer() = default;

std::unique_ptr<OnlineStream> OnlineRecognizer::CreateStream() const {
  return impl_->CreateStream();
}

bool OnlineRecognizer::IsReady(OnlineStream *s) const {
  return impl_->IsReady(s);
}

void OnlineRecognizer::DecodeStreams(OnlineStream **ss, int32_t n) {
  impl_->DecodeStreams(ss, n);
}

OnlineRecognizerResult OnlineRecognizer::GetResult(OnlineStream *s) {
  return impl_->GetResult(s);
}

}  // namespace sherpa_onnx