online_recognizer.py
2.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from pathlib import Path
from typing import List
from _sherpa_onnx import (
OnlineStream,
OnlineTransducerModelConfig,
FeatureExtractorConfig,
OnlineRecognizerConfig,
)
from _sherpa_onnx import OnlineRecognizer as _Recognizer
def _assert_file_exists(f: str):
assert Path(f).is_file(), f"{f} does not exist"
class OnlineRecognizer(object):
"""A class for streaming speech recognition."""
def __init__(
self,
tokens: str,
encoder: str,
decoder: str,
joiner: str,
num_threads: int = 4,
sample_rate: float = 16000,
feature_dim: int = 80,
):
"""
Please refer to
`<https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html>`_
to download pre-trained models for different languages, e.g., Chinese,
English, etc.
Args:
tokens:
Path to ``tokens.txt``. Each line in ``tokens.txt`` contains two
columns::
symbol integer_id
encoder:
Path to ``encoder.onnx``.
decoder:
Path to ``decoder.onnx``.
joiner:
Path to ``joiner.onnx``.
num_threads:
Number of threads for neural network computation.
sample_rate:
Sample rate of the training data used to train the model.
feature_dim:
Dimension of the feature used to train the model.
"""
_assert_file_exists(tokens)
_assert_file_exists(encoder)
_assert_file_exists(decoder)
_assert_file_exists(joiner)
assert num_threads > 0, num_threads
model_config = OnlineTransducerModelConfig(
encoder_filename=encoder,
decoder_filename=decoder,
joiner_filename=joiner,
num_threads=num_threads,
)
feat_config = FeatureExtractorConfig(
sampling_rate=sample_rate,
feature_dim=feature_dim,
)
recognizer_config = OnlineRecognizerConfig(
feat_config=feat_config,
model_config=model_config,
tokens=tokens,
)
self.recognizer = _Recognizer(recognizer_config)
def create_stream(self):
return self.recognizer.create_stream()
def decode_stream(self, s: OnlineStream):
self.recognizer.decode_stream(s)
def decode_streams(self, ss: List[OnlineStream]):
self.recognizer.decode_streams(ss)
def is_ready(self, s: OnlineStream) -> bool:
return self.recognizer.is_ready(s)
def get_result(self, s: OnlineStream) -> str:
return self.recognizer.get_result(s).text