spoken-language-identification.py
5.0 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python3
"""
This script shows how to use Python APIs for spoken languge identification.
It detects the language spoken in the given wave file.
Usage:
1. Download a whisper multilingual model. We use a tiny model below.
Please refer to https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
to download more models.
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-whisper-tiny.tar.bz2
tar xvf sherpa-onnx-whisper-tiny.tar.bz2
rm sherpa-onnx-whisper-tiny.tar.bz2
We only use the int8.onnx models below.
2. Download a test wave.
You can find many wave files for different languages at
https://hf-mirror.com/spaces/k2-fsa/spoken-language-identification/tree/main/test_wavs
wget https://hf-mirror.com/spaces/k2-fsa/spoken-language-identification/resolve/main/test_wavs/de-german.wav
python3 ./python-api-examples/spoken-language-identification.py
--whisper-encoder=sherpa-onnx-whisper-tiny/tiny-encoder.int8.onnx \
--whisper-decoder=sherpa-onnx-whisper-tiny/tiny-decoder.int8.onnx \
--num-threads=1 \
./de-german.wav
"""
import argparse
import logging
import time
import wave
from pathlib import Path
from typing import Tuple
import numpy as np
import sherpa_onnx
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--whisper-encoder",
required=True,
type=str,
help="Path to a multilingual whisper encoder model",
)
parser.add_argument(
"--whisper-decoder",
required=True,
type=str,
help="Path to a multilingual whisper decoder model",
)
parser.add_argument(
"--num-threads",
type=int,
default=1,
help="Number of threads for neural network computation",
)
parser.add_argument(
"--debug",
type=bool,
default=False,
help="True to show debug messages",
)
parser.add_argument(
"--provider",
type=str,
default="cpu",
help="Valid values: cpu, cuda, coreml",
)
parser.add_argument(
"sound_file",
type=str,
help="The input sound file to identify. It must be of WAVE"
"format with a single channel, and each sample has 16-bit, "
"i.e., int16_t. "
"The sample rate of the file can be arbitrary and does not need to "
"be 16 kHz",
)
return parser.parse_args()
def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/whisper/index.html to download it"
)
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
"""
Args:
wave_filename:
Path to a wave file. It should be single channel and each sample should
be 16-bit. Its sample rate does not need to be 16kHz.
Returns:
Return a tuple containing:
- A 1-D array of dtype np.float32 containing the samples, which are
normalized to the range [-1, 1].
- sample rate of the wave file
"""
with wave.open(wave_filename) as f:
assert f.getnchannels() == 1, f.getnchannels()
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes
num_samples = f.getnframes()
samples = f.readframes(num_samples)
samples_int16 = np.frombuffer(samples, dtype=np.int16)
samples_float32 = samples_int16.astype(np.float32)
samples_float32 = samples_float32 / 32768
return samples_float32, f.getframerate()
def main():
args = get_args()
assert_file_exists(args.whisper_encoder)
assert_file_exists(args.whisper_decoder)
assert args.num_threads > 0, args.num_threads
config = sherpa_onnx.SpokenLanguageIdentificationConfig(
whisper=sherpa_onnx.SpokenLanguageIdentificationWhisperConfig(
encoder=args.whisper_encoder,
decoder=args.whisper_decoder,
),
num_threads=args.num_threads,
debug=args.debug,
provider=args.provider,
)
slid = sherpa_onnx.SpokenLanguageIdentification(config)
samples, sample_rate = read_wave(args.sound_file)
start_time = time.time()
stream = slid.create_stream()
stream.accept_waveform(sample_rate=sample_rate, waveform=samples)
lang = slid.compute(stream)
end_time = time.time()
elapsed_seconds = end_time - start_time
audio_duration = len(samples) / sample_rate
real_time_factor = elapsed_seconds / audio_duration
logging.info(f"File: {args.sound_file}")
logging.info(f"Detected language: {lang}")
logging.info(f"Elapsed seconds: {elapsed_seconds:.3f}")
logging.info(f"Audio duration in seconds: {audio_duration:.3f}")
logging.info(
f"RTF: {elapsed_seconds:.3f}/{audio_duration:.3f} = {real_time_factor:.3f}"
)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()