offline-transducer-greedy-search-nemo-decoder.cc
4.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// sherpa-onnx/csrc/offline-transducer-greedy-search-nemo-decoder.cc
//
// Copyright (c) 2024 Xiaomi Corporation
#include "sherpa-onnx/csrc/offline-transducer-greedy-search-nemo-decoder.h"
#include <algorithm>
#include <iterator>
#include <utility>
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
namespace sherpa_onnx {
static std::pair<Ort::Value, Ort::Value> BuildDecoderInput(
int32_t token, OrtAllocator *allocator) {
std::array<int64_t, 2> shape{1, 1};
Ort::Value decoder_input =
Ort::Value::CreateTensor<int32_t>(allocator, shape.data(), shape.size());
std::array<int64_t, 1> length_shape{1};
Ort::Value decoder_input_length = Ort::Value::CreateTensor<int32_t>(
allocator, length_shape.data(), length_shape.size());
int32_t *p = decoder_input.GetTensorMutableData<int32_t>();
int32_t *p_length = decoder_input_length.GetTensorMutableData<int32_t>();
p[0] = token;
p_length[0] = 1;
return {std::move(decoder_input), std::move(decoder_input_length)};
}
static OfflineTransducerDecoderResult DecodeOne(
const float *p, int32_t num_rows, int32_t num_cols,
OfflineTransducerNeMoModel *model, float blank_penalty) {
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
OfflineTransducerDecoderResult ans;
int32_t vocab_size = model->VocabSize();
int32_t blank_id = vocab_size - 1;
int32_t max_symbols_per_frame = 10;
auto decoder_input_pair = BuildDecoderInput(blank_id, model->Allocator());
std::pair<Ort::Value, std::vector<Ort::Value>> decoder_output_pair =
model->RunDecoder(std::move(decoder_input_pair.first),
std::move(decoder_input_pair.second),
model->GetDecoderInitStates(1));
std::array<int64_t, 3> encoder_shape{1, num_cols, 1};
for (int32_t t = 0; t != num_rows; ++t) {
Ort::Value cur_encoder_out = Ort::Value::CreateTensor(
memory_info, const_cast<float *>(p) + t * num_cols, num_cols,
encoder_shape.data(), encoder_shape.size());
for (int32_t q = 0; q != max_symbols_per_frame; ++q) {
Ort::Value logit = model->RunJoiner(View(&cur_encoder_out),
View(&decoder_output_pair.first));
float *p_logit = logit.GetTensorMutableData<float>();
if (blank_penalty > 0) {
p_logit[blank_id] -= blank_penalty;
}
auto y = static_cast<int32_t>(std::distance(
static_cast<const float *>(p_logit),
std::max_element(static_cast<const float *>(p_logit),
static_cast<const float *>(p_logit) + vocab_size)));
if (y != blank_id) {
ans.tokens.push_back(y);
ans.timestamps.push_back(t);
decoder_input_pair = BuildDecoderInput(y, model->Allocator());
decoder_output_pair =
model->RunDecoder(std::move(decoder_input_pair.first),
std::move(decoder_input_pair.second),
std::move(decoder_output_pair.second));
} else {
break;
} // if (y != blank_id)
}
} // for (int32_t i = 0; i != num_rows; ++i)
return ans;
}
std::vector<OfflineTransducerDecoderResult>
OfflineTransducerGreedySearchNeMoDecoder::Decode(
Ort::Value encoder_out, Ort::Value encoder_out_length,
OfflineStream ** /*ss = nullptr*/, int32_t /*n= 0*/) {
auto shape = encoder_out.GetTensorTypeAndShapeInfo().GetShape();
int32_t batch_size = static_cast<int32_t>(shape[0]);
int32_t dim1 = static_cast<int32_t>(shape[1]);
int32_t dim2 = static_cast<int32_t>(shape[2]);
auto length_type =
encoder_out_length.GetTensorTypeAndShapeInfo().GetElementType();
if ((length_type != ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32) &&
(length_type != ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64)) {
SHERPA_ONNX_LOGE("Unsupported encoder_out_length data type: %d",
static_cast<int32_t>(length_type));
SHERPA_ONNX_EXIT(-1);
}
const float *p = encoder_out.GetTensorData<float>();
std::vector<OfflineTransducerDecoderResult> ans(batch_size);
for (int32_t i = 0; i != batch_size; ++i) {
const float *this_p = p + dim1 * dim2 * i;
int32_t this_len = length_type == ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32
? encoder_out_length.GetTensorData<int32_t>()[i]
: encoder_out_length.GetTensorData<int64_t>()[i];
ans[i] = DecodeOne(this_p, this_len, dim2, model_, blank_penalty_);
}
return ans;
}
} // namespace sherpa_onnx