sherpa_onnx.go
14.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/*
Speech recognition with [Next-gen Kaldi].
[sherpa-onnx] is an open-source speech recognition framework for [Next-gen Kaldi].
It depends only on [onnxruntime], supporting both streaming and non-streaming
speech recognition.
It does not need to access the network during recognition and everything
runs locally.
It supports a variety of platforms, such as Linux (x86_64, aarch64, arm),
Windows (x86_64, x86), macOS (x86_64, arm64), etc.
Usage examples:
1. Real-time speech recognition from a microphone
Please see
https://github.com/k2-fsa/sherpa-onnx/tree/master/go-api-examples/real-time-speech-recognition-from-microphone
2. Decode files using a non-streaming model
Please see
https://github.com/k2-fsa/sherpa-onnx/tree/master/go-api-examples/non-streaming-decode-files
3. Decode files using a streaming model
Please see
https://github.com/k2-fsa/sherpa-onnx/tree/master/go-api-examples/streaming-decode-files
[sherpa-onnx]: https://github.com/k2-fsa/sherpa-onnx
[onnxruntime]: https://github.com/microsoft/onnxruntime
[Next-gen Kaldi]: https://github.com/k2-fsa/
*/
package sherpa_onnx
// #include <stdlib.h>
// #include "c-api.h"
import "C"
import "unsafe"
// Configuration for online/streaming transducer models
//
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-transducer/index.html
// to download pre-trained models
type OnlineTransducerModelConfig struct {
Encoder string // Path to the encoder model, e.g., encoder.onnx or encoder.int8.onnx
Decoder string // Path to the decoder model.
Joiner string // Path to the joiner model.
Tokens string // Path to tokens.txt
NumThreads int // Number of threads to use for neural network computation
Provider string // Optional. Valid values are: cpu, cuda, coreml
Debug int // 1 to show model meta information while loading it.
ModelType string // Optional. You can specify it for faster model initialization
}
// Configuration for the feature extractor
type FeatureConfig struct {
// Sample rate expected by the model. It is 16000 for all
// pre-trained models provided by us
SampleRate int
// Feature dimension expected by the model. It is 80 for all
// pre-trained models provided by us
FeatureDim int
}
// Configuration for the online/streaming recognizer.
type OnlineRecognizerConfig struct {
FeatConfig FeatureConfig
ModelConfig OnlineTransducerModelConfig
// Valid decoding methods: greedy_search, modified_beam_search
DecodingMethod string
// Used only when DecodingMethod is modified_beam_search. It specifies
// the maximum number of paths to keep during the search
MaxActivePaths int
EnableEndpoint int // 1 to enable endpoint detection.
// Please see
// https://k2-fsa.github.io/sherpa/ncnn/endpoint.html
// for the meaning of Rule1MinTrailingSilence, Rule2MinTrailingSilence
// and Rule3MinUtteranceLength.
Rule1MinTrailingSilence float32
Rule2MinTrailingSilence float32
Rule3MinUtteranceLength float32
}
// It contains the recognition result for a online stream.
type OnlineRecognizerResult struct {
Text string
}
// The online recognizer class. It wraps a pointer from C.
type OnlineRecognizer struct {
impl *C.struct_SherpaOnnxOnlineRecognizer
}
// The online stream class. It wraps a pointer from C.
type OnlineStream struct {
impl *C.struct_SherpaOnnxOnlineStream
}
// Free the internal pointer inside the recognizer to avoid memory leak.
func DeleteOnlineRecognizer(recognizer *OnlineRecognizer) {
C.DestroyOnlineRecognizer(recognizer.impl)
recognizer.impl = nil
}
// The user is responsible to invoke [DeleteOnlineRecognizer]() to free
// the returned recognizer to avoid memory leak
func NewOnlineRecognizer(config *OnlineRecognizerConfig) *OnlineRecognizer {
c := C.struct_SherpaOnnxOnlineRecognizerConfig{}
c.feat_config.sample_rate = C.int(config.FeatConfig.SampleRate)
c.feat_config.feature_dim = C.int(config.FeatConfig.FeatureDim)
c.model_config.encoder = C.CString(config.ModelConfig.Encoder)
defer C.free(unsafe.Pointer(c.model_config.encoder))
c.model_config.decoder = C.CString(config.ModelConfig.Decoder)
defer C.free(unsafe.Pointer(c.model_config.decoder))
c.model_config.joiner = C.CString(config.ModelConfig.Joiner)
defer C.free(unsafe.Pointer(c.model_config.joiner))
c.model_config.tokens = C.CString(config.ModelConfig.Tokens)
defer C.free(unsafe.Pointer(c.model_config.tokens))
c.model_config.num_threads = C.int(config.ModelConfig.NumThreads)
c.model_config.provider = C.CString(config.ModelConfig.Provider)
defer C.free(unsafe.Pointer(c.model_config.provider))
c.model_config.debug = C.int(config.ModelConfig.Debug)
c.model_config.model_type = C.CString(config.ModelConfig.ModelType)
defer C.free(unsafe.Pointer(c.model_config.model_type))
c.decoding_method = C.CString(config.DecodingMethod)
defer C.free(unsafe.Pointer(c.decoding_method))
c.max_active_paths = C.int(config.MaxActivePaths)
c.enable_endpoint = C.int(config.EnableEndpoint)
c.rule1_min_trailing_silence = C.float(config.Rule1MinTrailingSilence)
c.rule2_min_trailing_silence = C.float(config.Rule2MinTrailingSilence)
c.rule3_min_utterance_length = C.float(config.Rule3MinUtteranceLength)
recognizer := &OnlineRecognizer{}
recognizer.impl = C.CreateOnlineRecognizer(&c)
return recognizer
}
// Delete the internal pointer inside the stream to avoid memory leak.
func DeleteOnlineStream(stream *OnlineStream) {
C.DestroyOnlineStream(stream.impl)
stream.impl = nil
}
// The user is responsible to invoke [DeleteOnlineStream]() to free
// the returned stream to avoid memory leak
func NewOnlineStream(recognizer *OnlineRecognizer) *OnlineStream {
stream := &OnlineStream{}
stream.impl = C.CreateOnlineStream(recognizer.impl)
return stream
}
// Input audio samples for the stream.
//
// sampleRate is the actual sample rate of the input audio samples. If it
// is different from the sample rate expected by the feature extractor, we will
// do resampling inside.
//
// samples contains audio samples. Each sample is in the range [-1, 1]
func (s *OnlineStream) AcceptWaveform(sampleRate int, samples []float32) {
C.AcceptWaveform(s.impl, C.int(sampleRate), (*C.float)(&samples[0]), C.int(len(samples)))
}
// Signal that there will be no incoming audio samples.
// After calling this function, you cannot call [OnlineStream.AcceptWaveform] any longer.
//
// The main purpose of this function is to flush the remaining audio samples
// buffered inside for feature extraction.
func (s *OnlineStream) InputFinished() {
C.InputFinished(s.impl)
}
// Check whether the stream has enough feature frames for decoding.
// Return true if this stream is ready for decoding. Return false otherwise.
//
// You will usually use it like below:
//
// for recognizer.IsReady(s) {
// recognizer.Decode(s)
// }
func (recognizer *OnlineRecognizer) IsReady(s *OnlineStream) bool {
return C.IsOnlineStreamReady(recognizer.impl, s.impl) == 1
}
// Return true if an endpoint is detected.
//
// You usually use it like below:
//
// if recognizer.IsEndpoint(s) {
// // do your own stuff after detecting an endpoint
//
// recognizer.Reset(s)
// }
func (recognizer *OnlineRecognizer) IsEndpoint(s *OnlineStream) bool {
return C.IsEndpoint(recognizer.impl, s.impl) == 1
}
// After calling this function, the internal neural network model states
// are reset and IsEndpoint(s) would return false. GetResult(s) would also
// return an empty string.
func (recognizer *OnlineRecognizer) Reset(s *OnlineStream) {
C.Reset(recognizer.impl, s.impl)
}
// Decode the stream. Before calling this function, you have to ensure
// that recognizer.IsReady(s) returns true. Otherwise, you will be SAD.
//
// You usually use it like below:
//
// for recognizer.IsReady(s) {
// recognizer.Decode(s)
// }
func (recognizer *OnlineRecognizer) Decode(s *OnlineStream) {
C.DecodeOnlineStream(recognizer.impl, s.impl)
}
// Decode multiple streams in parallel, i.e., in batch.
// You have to ensure that each stream is ready for decoding. Otherwise,
// you will be SAD.
func (recognizer *OnlineRecognizer) DecodeStreams(s []*OnlineStream) {
ss := make([]*C.struct_SherpaOnnxOnlineStream, len(s))
for i, v := range s {
ss[i] = v.impl
}
C.DecodeMultipleOnlineStreams(recognizer.impl, &ss[0], C.int(len(s)))
}
// Get the current result of stream since the last invoke of Reset()
func (recognizer *OnlineRecognizer) GetResult(s *OnlineStream) *OnlineRecognizerResult {
p := C.GetOnlineStreamResult(recognizer.impl, s.impl)
defer C.DestroyOnlineRecognizerResult(p)
result := &OnlineRecognizerResult{}
result.Text = C.GoString(p.text)
return result
}
// Configuration for offline/non-streaming transducer.
//
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-transducer/index.html
// to download pre-trained models
type OfflineTransducerModelConfig struct {
Encoder string // Path to the encoder model, i.e., encoder.onnx or encoder.int8.onnx
Decoder string // Path to the decoder model
Joiner string // Path to the joiner model
}
// Configuration for offline/non-streaming paraformer.
//
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-paraformer/index.html
// to download pre-trained models
type OfflineParaformerModelConfig struct {
Model string // Path to the model, e.g., model.onnx or model.int8.onnx
}
// Configuration for offline/non-streaming NeMo CTC models.
//
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-ctc/index.html
// to download pre-trained models
type OfflineNemoEncDecCtcModelConfig struct {
Model string // Path to the model, e.g., model.onnx or model.int8.onnx
}
// Configuration for offline LM.
type OfflineLMConfig struct {
Model string // Path to the model
Scale float32 // scale for LM score
}
type OfflineModelConfig struct {
Transducer OfflineTransducerModelConfig
Paraformer OfflineParaformerModelConfig
NemoCTC OfflineNemoEncDecCtcModelConfig
Tokens string // Path to tokens.txt
// Number of threads to use for neural network computation
NumThreads int
// 1 to print model meta information while loading
Debug int
// Optional. Valid values: cpu, cuda, coreml
Provider string
// Optional. Specify it for faster model initialization.
ModelType string
}
// Configuration for the offline/non-streaming recognizer.
type OfflineRecognizerConfig struct {
FeatConfig FeatureConfig
ModelConfig OfflineModelConfig
LmConfig OfflineLMConfig
// Valid decoding method: greedy_search, modified_beam_search
DecodingMethod string
// Used only when DecodingMethod is modified_beam_search.
MaxActivePaths int
}
// It wraps a pointer from C
type OfflineRecognizer struct {
impl *C.struct_SherpaOnnxOfflineRecognizer
}
// It wraps a pointer from C
type OfflineStream struct {
impl *C.struct_SherpaOnnxOfflineStream
}
// It contains recognition result of an offline stream.
type OfflineRecognizerResult struct {
Text string
}
// Frees the internal pointer of the recognition to avoid memory leak.
func DeleteOfflineRecognizer(recognizer *OfflineRecognizer) {
C.DestroyOfflineRecognizer(recognizer.impl)
recognizer.impl = nil
}
// The user is responsible to invoke [DeleteOfflineRecognizer]() to free
// the returned recognizer to avoid memory leak
func NewOfflineRecognizer(config *OfflineRecognizerConfig) *OfflineRecognizer {
c := C.struct_SherpaOnnxOfflineRecognizerConfig{}
c.feat_config.sample_rate = C.int(config.FeatConfig.SampleRate)
c.feat_config.feature_dim = C.int(config.FeatConfig.FeatureDim)
c.model_config.transducer.encoder = C.CString(config.ModelConfig.Transducer.Encoder)
defer C.free(unsafe.Pointer(c.model_config.transducer.encoder))
c.model_config.transducer.decoder = C.CString(config.ModelConfig.Transducer.Decoder)
defer C.free(unsafe.Pointer(c.model_config.transducer.decoder))
c.model_config.transducer.joiner = C.CString(config.ModelConfig.Transducer.Joiner)
defer C.free(unsafe.Pointer(c.model_config.transducer.joiner))
c.model_config.paraformer.model = C.CString(config.ModelConfig.Paraformer.Model)
defer C.free(unsafe.Pointer(c.model_config.paraformer.model))
c.model_config.nemo_ctc.model = C.CString(config.ModelConfig.NemoCTC.Model)
defer C.free(unsafe.Pointer(c.model_config.nemo_ctc.model))
c.model_config.tokens = C.CString(config.ModelConfig.Tokens)
defer C.free(unsafe.Pointer(c.model_config.tokens))
c.model_config.num_threads = C.int(config.ModelConfig.NumThreads)
c.model_config.debug = C.int(config.ModelConfig.Debug)
c.model_config.provider = C.CString(config.ModelConfig.Provider)
defer C.free(unsafe.Pointer(c.model_config.provider))
c.model_config.model_type = C.CString(config.ModelConfig.ModelType)
defer C.free(unsafe.Pointer(c.model_config.model_type))
c.lm_config.model = C.CString(config.LmConfig.Model)
defer C.free(unsafe.Pointer(c.lm_config.model))
c.lm_config.scale = C.float(config.LmConfig.Scale)
c.decoding_method = C.CString(config.DecodingMethod)
defer C.free(unsafe.Pointer(c.decoding_method))
c.max_active_paths = C.int(config.MaxActivePaths)
recognizer := &OfflineRecognizer{}
recognizer.impl = C.CreateOfflineRecognizer(&c)
return recognizer
}
// Frees the internal pointer of the stream to avoid memory leak.
func DeleteOfflineStream(stream *OfflineStream) {
C.DestroyOfflineStream(stream.impl)
stream.impl = nil
}
// The user is responsible to invoke [DeleteOfflineStream]() to free
// the returned stream to avoid memory leak
func NewOfflineStream(recognizer *OfflineRecognizer) *OfflineStream {
stream := &OfflineStream{}
stream.impl = C.CreateOfflineStream(recognizer.impl)
return stream
}
// Input audio samples for the offline stream.
// Please only call it once. That is, input all samples at once.
//
// sampleRate is the sample rate of the input audio samples. If it is different
// from the value expected by the feature extractor, we will do resampling inside.
//
// samples contains the actual audio samples. Each sample is in the range [-1, 1].
func (s *OfflineStream) AcceptWaveform(sampleRate int, samples []float32) {
C.AcceptWaveformOffline(s.impl, C.int(sampleRate), (*C.float)(&samples[0]), C.int(len(samples)))
}
// Decode the offline stream.
func (recognizer *OfflineRecognizer) Decode(s *OfflineStream) {
C.DecodeOfflineStream(recognizer.impl, s.impl)
}
// Decode multiple streams in parallel, i.e., in batch.
func (recognizer *OfflineRecognizer) DecodeStreams(s []*OfflineStream) {
ss := make([]*C.struct_SherpaOnnxOfflineStream, len(s))
for i, v := range s {
ss[i] = v.impl
}
C.DecodeMultipleOfflineStreams(recognizer.impl, &ss[0], C.int(len(s)))
}
// Get the recognition result of the offline stream.
func (s *OfflineStream) GetResult() *OfflineRecognizerResult {
p := C.GetOfflineStreamResult(s.impl)
defer C.DestroyOfflineRecognizerResult(p)
result := &OfflineRecognizerResult{}
result.Text = C.GoString(p.text)
return result
}