offline-tts-zipvoice-model.cc
11.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
// sherpa-onnx/csrc/offline-tts-zipvoice-model.cc
//
// Copyright (c) 2025 Xiaomi Corporation
#include "sherpa-onnx/csrc/offline-tts-zipvoice-model.h"
#include <algorithm>
#include <cstring>
#include <iostream>
#include <random>
#include <string>
#include <utility>
#include <vector>
#if __ANDROID_API__ >= 9
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif
#if __OHOS__
#include "rawfile/raw_file_manager.h"
#endif
#include "sherpa-onnx/csrc/file-utils.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/session.h"
#include "sherpa-onnx/csrc/text-utils.h"
namespace sherpa_onnx {
class OfflineTtsZipvoiceModel::Impl {
public:
explicit Impl(const OfflineTtsModelConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_ERROR),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
auto text_buf = ReadFile(config.zipvoice.text_model);
auto fm_buf = ReadFile(config.zipvoice.flow_matching_model);
Init(text_buf.data(), text_buf.size(), fm_buf.data(), fm_buf.size());
}
template <typename Manager>
Impl(Manager *mgr, const OfflineTtsModelConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_ERROR),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
auto text_buf = ReadFile(mgr, config.zipvoice.text_model);
auto fm_buf = ReadFile(mgr, config.zipvoice.flow_matching_model);
Init(text_buf.data(), text_buf.size(), fm_buf.data(), fm_buf.size());
}
const OfflineTtsZipvoiceModelMetaData &GetMetaData() const {
return meta_data_;
}
Ort::Value Run(Ort::Value tokens, Ort::Value prompt_tokens,
Ort::Value prompt_features, float speed, int32_t num_steps) {
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::vector<int64_t> tokens_shape =
tokens.GetTensorTypeAndShapeInfo().GetShape();
int64_t batch_size = tokens_shape[0];
if (batch_size != 1) {
SHERPA_ONNX_LOGE("Support only batch_size == 1. Given: %d",
static_cast<int32_t>(batch_size));
exit(-1);
}
std::vector<int64_t> prompt_feat_shape =
prompt_features.GetTensorTypeAndShapeInfo().GetShape();
int64_t prompt_feat_len = prompt_feat_shape[1];
int64_t prompt_feat_len_shape = 1;
Ort::Value prompt_feat_len_tensor = Ort::Value::CreateTensor<int64_t>(
memory_info, &prompt_feat_len, 1, &prompt_feat_len_shape, 1);
int64_t speed_shape = 1;
Ort::Value speed_tensor = Ort::Value::CreateTensor<float>(
memory_info, &speed, 1, &speed_shape, 1);
std::vector<Ort::Value> text_inputs;
text_inputs.reserve(4);
text_inputs.push_back(std::move(tokens));
text_inputs.push_back(std::move(prompt_tokens));
text_inputs.push_back(std::move(prompt_feat_len_tensor));
text_inputs.push_back(std::move(speed_tensor));
// forward text-encoder
auto text_out =
text_sess_->Run({}, text_input_names_ptr_.data(), text_inputs.data(),
text_inputs.size(), text_output_names_ptr_.data(),
text_output_names_ptr_.size());
Ort::Value &text_condition = text_out[0];
std::vector<int64_t> text_cond_shape =
text_condition.GetTensorTypeAndShapeInfo().GetShape();
int64_t num_frames = text_cond_shape[1];
int64_t feat_dim = meta_data_.feat_dim;
std::vector<float> x_data(batch_size * num_frames * feat_dim);
std::default_random_engine rng(std::random_device{}());
std::normal_distribution<float> norm(0, 1);
for (auto &v : x_data) v = norm(rng);
std::vector<int64_t> x_shape = {batch_size, num_frames, feat_dim};
Ort::Value x = Ort::Value::CreateTensor<float>(
memory_info, x_data.data(), x_data.size(), x_shape.data(),
x_shape.size());
std::vector<float> speech_cond_data(batch_size * num_frames * feat_dim,
0.0f);
const float *src = prompt_features.GetTensorData<float>();
float *dst = speech_cond_data.data();
std::memcpy(dst, src,
batch_size * prompt_feat_len * feat_dim * sizeof(float));
std::vector<int64_t> speech_cond_shape = {batch_size, num_frames, feat_dim};
Ort::Value speech_condition = Ort::Value::CreateTensor<float>(
memory_info, speech_cond_data.data(), speech_cond_data.size(),
speech_cond_shape.data(), speech_cond_shape.size());
float t_shift = config_.zipvoice.t_shift;
float guidance_scale = config_.zipvoice.guidance_scale;
std::vector<float> timesteps(num_steps + 1);
for (int32_t i = 0; i <= num_steps; ++i) {
float t = static_cast<float>(i) / num_steps;
timesteps[i] = t_shift * t / (1.0f + (t_shift - 1.0f) * t);
}
int64_t guidance_scale_shape = 1;
Ort::Value guidance_scale_tensor = Ort::Value::CreateTensor<float>(
memory_info, &guidance_scale, 1, &guidance_scale_shape, 1);
std::vector<Ort::Value> fm_inputs;
fm_inputs.reserve(5);
// fm_inputs[0] is t tensor, will set in for loop
fm_inputs.emplace_back(nullptr);
fm_inputs.push_back(std::move(x));
fm_inputs.push_back(std::move(text_condition));
fm_inputs.push_back(std::move(speech_condition));
fm_inputs.push_back(std::move(guidance_scale_tensor));
for (int32_t step = 0; step < num_steps; ++step) {
float t_val = timesteps[step];
int64_t t_shape = 1;
Ort::Value t_tensor =
Ort::Value::CreateTensor<float>(memory_info, &t_val, 1, &t_shape, 1);
fm_inputs[0] = std::move(t_tensor);
auto fm_out = fm_sess_->Run(
{}, fm_input_names_ptr_.data(), fm_inputs.data(), fm_inputs.size(),
fm_output_names_ptr_.data(), fm_output_names_ptr_.size());
Ort::Value &v = fm_out[0];
float delta_t = timesteps[step + 1] - timesteps[step];
float *x_ptr = fm_inputs[1].GetTensorMutableData<float>();
const float *v_ptr = v.GetTensorData<float>();
int64_t N = batch_size * num_frames * feat_dim;
for (int64_t i = 0; i < N; ++i) {
x_ptr[i] += v_ptr[i] * delta_t;
}
}
int64_t keep_frames = num_frames - prompt_feat_len;
std::vector<float> out_data(batch_size * keep_frames * feat_dim);
x = std::move(fm_inputs[1]);
const float *x_ptr = x.GetTensorData<float>();
for (int64_t b = 0; b < batch_size; ++b) {
std::memcpy(out_data.data() + b * keep_frames * feat_dim,
x_ptr + (b * num_frames + prompt_feat_len) * feat_dim,
keep_frames * feat_dim * sizeof(float));
}
std::vector<int64_t> out_shape = {batch_size, keep_frames, feat_dim};
return Ort::Value::CreateTensor<float>(memory_info, out_data.data(),
out_data.size(), out_shape.data(),
out_shape.size());
}
private:
void Init(void *text_model_data, size_t text_model_data_length,
void *fm_model_data, size_t fm_model_data_length) {
// Init text-encoder model
text_sess_ = std::make_unique<Ort::Session>(
env_, text_model_data, text_model_data_length, sess_opts_);
GetInputNames(text_sess_.get(), &text_input_names_, &text_input_names_ptr_);
GetOutputNames(text_sess_.get(), &text_output_names_,
&text_output_names_ptr_);
// Init flow-matching model
fm_sess_ = std::make_unique<Ort::Session>(env_, fm_model_data,
fm_model_data_length, sess_opts_);
GetInputNames(fm_sess_.get(), &fm_input_names_, &fm_input_names_ptr_);
GetOutputNames(fm_sess_.get(), &fm_output_names_, &fm_output_names_ptr_);
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
Ort::ModelMetadata meta_data = text_sess_->GetModelMetadata();
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.use_espeak, "use_espeak",
1);
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.use_pinyin, "use_pinyin",
1);
meta_data = fm_sess_->GetModelMetadata();
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.version, "version", 1);
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.feat_dim, "feat_dim",
100);
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.sample_rate,
"sample_rate", 24000);
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.n_fft, "n_fft", 1024);
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.hop_length, "hop_length",
256);
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.window_length,
"window_length", 1024);
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.num_mels, "num_mels",
100);
if (config_.debug) {
std::ostringstream os;
os << "---zipvoice text-encoder model---\n";
Ort::ModelMetadata text_meta_data = text_sess_->GetModelMetadata();
PrintModelMetadata(os, text_meta_data);
os << "----------input names----------\n";
int32_t i = 0;
for (const auto &s : text_input_names_) {
os << i << " " << s << "\n";
++i;
}
os << "----------output names----------\n";
i = 0;
for (const auto &s : text_output_names_) {
os << i << " " << s << "\n";
++i;
}
os << "---zipvoice flow-matching model---\n";
PrintModelMetadata(os, meta_data);
os << "----------input names----------\n";
i = 0;
for (const auto &s : fm_input_names_) {
os << i << " " << s << "\n";
++i;
}
os << "----------output names----------\n";
i = 0;
for (const auto &s : fm_output_names_) {
os << i << " " << s << "\n";
++i;
}
#if __OHOS__
SHERPA_ONNX_LOGE("%{public}s\n", os.str().c_str());
#else
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
#endif
}
}
private:
OfflineTtsModelConfig config_;
Ort::Env env_;
Ort::SessionOptions sess_opts_;
Ort::AllocatorWithDefaultOptions allocator_;
std::unique_ptr<Ort::Session> text_sess_;
std::unique_ptr<Ort::Session> fm_sess_;
std::vector<std::string> text_input_names_;
std::vector<const char *> text_input_names_ptr_;
std::vector<std::string> text_output_names_;
std::vector<const char *> text_output_names_ptr_;
std::vector<std::string> fm_input_names_;
std::vector<const char *> fm_input_names_ptr_;
std::vector<std::string> fm_output_names_;
std::vector<const char *> fm_output_names_ptr_;
OfflineTtsZipvoiceModelMetaData meta_data_;
};
OfflineTtsZipvoiceModel::OfflineTtsZipvoiceModel(
const OfflineTtsModelConfig &config)
: impl_(std::make_unique<Impl>(config)) {}
template <typename Manager>
OfflineTtsZipvoiceModel::OfflineTtsZipvoiceModel(
Manager *mgr, const OfflineTtsModelConfig &config)
: impl_(std::make_unique<Impl>(mgr, config)) {}
OfflineTtsZipvoiceModel::~OfflineTtsZipvoiceModel() = default;
const OfflineTtsZipvoiceModelMetaData &OfflineTtsZipvoiceModel::GetMetaData()
const {
return impl_->GetMetaData();
}
Ort::Value OfflineTtsZipvoiceModel::Run(Ort::Value tokens,
Ort::Value prompt_tokens,
Ort::Value prompt_features,
float speed /*= 1.0*/,
int32_t num_steps /*= 16*/) const {
return impl_->Run(std::move(tokens), std::move(prompt_tokens),
std::move(prompt_features), speed, num_steps);
}
#if __ANDROID_API__ >= 9
template OfflineTtsZipvoiceModel::OfflineTtsZipvoiceModel(
AAssetManager *mgr, const OfflineTtsModelConfig &config);
#endif
#if __OHOS__
template OfflineTtsZipvoiceModel::OfflineTtsZipvoiceModel(
NativeResourceManager *mgr, const OfflineTtsModelConfig &config);
#endif
} // namespace sherpa_onnx