offline-tts-vits-impl.h
9.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// sherpa-onnx/csrc/offline-tts-vits-impl.h
//
// Copyright (c) 2023 Xiaomi Corporation
#ifndef SHERPA_ONNX_CSRC_OFFLINE_TTS_VITS_IMPL_H_
#define SHERPA_ONNX_CSRC_OFFLINE_TTS_VITS_IMPL_H_
#include <memory>
#include <string>
#include <utility>
#include <vector>
#if __ANDROID_API__ >= 9
#include <strstream>
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif
#include "kaldifst/csrc/text-normalizer.h"
#include "sherpa-onnx/csrc/lexicon.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/offline-tts-character-frontend.h"
#include "sherpa-onnx/csrc/offline-tts-frontend.h"
#include "sherpa-onnx/csrc/offline-tts-impl.h"
#include "sherpa-onnx/csrc/offline-tts-vits-model.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/piper-phonemize-lexicon.h"
#include "sherpa-onnx/csrc/text-utils.h"
namespace sherpa_onnx {
class OfflineTtsVitsImpl : public OfflineTtsImpl {
public:
explicit OfflineTtsVitsImpl(const OfflineTtsConfig &config)
: config_(config),
model_(std::make_unique<OfflineTtsVitsModel>(config.model)) {
InitFrontend();
if (!config.rule_fsts.empty()) {
std::vector<std::string> files;
SplitStringToVector(config.rule_fsts, ",", false, &files);
tn_list_.reserve(files.size());
for (const auto &f : files) {
if (config.model.debug) {
SHERPA_ONNX_LOGE("rule fst: %s", f.c_str());
}
tn_list_.push_back(std::make_unique<kaldifst::TextNormalizer>(f));
}
}
}
#if __ANDROID_API__ >= 9
OfflineTtsVitsImpl(AAssetManager *mgr, const OfflineTtsConfig &config)
: config_(config),
model_(std::make_unique<OfflineTtsVitsModel>(mgr, config.model)) {
InitFrontend(mgr);
if (!config.rule_fsts.empty()) {
std::vector<std::string> files;
SplitStringToVector(config.rule_fsts, ",", false, &files);
tn_list_.reserve(files.size());
for (const auto &f : files) {
if (config.model.debug) {
SHERPA_ONNX_LOGE("rule fst: %s", f.c_str());
}
auto buf = ReadFile(mgr, f);
std::istrstream is(buf.data(), buf.size());
tn_list_.push_back(std::make_unique<kaldifst::TextNormalizer>(is));
}
}
}
#endif
int32_t SampleRate() const override {
return model_->GetMetaData().sample_rate;
}
int32_t NumSpeakers() const override {
return model_->GetMetaData().num_speakers;
}
GeneratedAudio Generate(
const std::string &_text, int64_t sid = 0, float speed = 1.0,
GeneratedAudioCallback callback = nullptr) const override {
const auto &meta_data = model_->GetMetaData();
int32_t num_speakers = meta_data.num_speakers;
if (num_speakers == 0 && sid != 0) {
SHERPA_ONNX_LOGE(
"This is a single-speaker model and supports only sid 0. Given sid: "
"%d. sid is ignored",
static_cast<int32_t>(sid));
}
if (num_speakers != 0 && (sid >= num_speakers || sid < 0)) {
SHERPA_ONNX_LOGE(
"This model contains only %d speakers. sid should be in the range "
"[%d, %d]. Given: %d. Use sid=0",
num_speakers, 0, num_speakers - 1, static_cast<int32_t>(sid));
sid = 0;
}
std::string text = _text;
if (config_.model.debug) {
SHERPA_ONNX_LOGE("Raw text: %s", text.c_str());
}
if (!tn_list_.empty()) {
for (const auto &tn : tn_list_) {
text = tn->Normalize(text);
if (config_.model.debug) {
SHERPA_ONNX_LOGE("After normalizing: %s", text.c_str());
}
}
}
std::vector<std::vector<int64_t>> x =
frontend_->ConvertTextToTokenIds(text, meta_data.voice);
if (x.empty() || (x.size() == 1 && x[0].empty())) {
SHERPA_ONNX_LOGE("Failed to convert %s to token IDs", text.c_str());
return {};
}
// TODO(fangjun): add blank inside the frontend, not here
if (meta_data.add_blank && config_.model.vits.data_dir.empty() &&
meta_data.frontend != "characters") {
for (auto &k : x) {
k = AddBlank(k);
}
}
int32_t x_size = static_cast<int32_t>(x.size());
if (config_.max_num_sentences <= 0 || x_size <= config_.max_num_sentences) {
auto ans = Process(x, sid, speed);
if (callback) {
callback(ans.samples.data(), ans.samples.size());
}
return ans;
}
// the input text is too long, we process sentences within it in batches
// to avoid OOM. Batch size is config_.max_num_sentences
std::vector<std::vector<int64_t>> batch;
int32_t batch_size = config_.max_num_sentences;
batch.reserve(config_.max_num_sentences);
int32_t num_batches = x_size / batch_size;
if (config_.model.debug) {
SHERPA_ONNX_LOGE(
"Text is too long. Split it into %d batches. batch size: %d. Number "
"of sentences: %d",
num_batches, batch_size, x_size);
}
GeneratedAudio ans;
int32_t k = 0;
for (int32_t b = 0; b != num_batches; ++b) {
batch.clear();
for (int32_t i = 0; i != batch_size; ++i, ++k) {
batch.push_back(std::move(x[k]));
}
auto audio = Process(batch, sid, speed);
ans.sample_rate = audio.sample_rate;
ans.samples.insert(ans.samples.end(), audio.samples.begin(),
audio.samples.end());
if (callback) {
callback(audio.samples.data(), audio.samples.size());
// Caution(fangjun): audio is freed when the callback returns, so users
// should copy the data if they want to access the data after
// the callback returns to avoid segmentation fault.
}
}
batch.clear();
while (k < x.size()) {
batch.push_back(std::move(x[k]));
++k;
}
if (!batch.empty()) {
auto audio = Process(batch, sid, speed);
ans.sample_rate = audio.sample_rate;
ans.samples.insert(ans.samples.end(), audio.samples.begin(),
audio.samples.end());
if (callback) {
callback(audio.samples.data(), audio.samples.size());
// Caution(fangjun): audio is freed when the callback returns, so users
// should copy the data if they want to access the data after
// the callback returns to avoid segmentation fault.
}
}
return ans;
}
private:
#if __ANDROID_API__ >= 9
void InitFrontend(AAssetManager *mgr) {
const auto &meta_data = model_->GetMetaData();
if (meta_data.frontend == "characters") {
frontend_ = std::make_unique<OfflineTtsCharacterFrontend>(
mgr, config_.model.vits.tokens, meta_data);
} else if ((meta_data.is_piper || meta_data.is_coqui) &&
!config_.model.vits.data_dir.empty()) {
frontend_ = std::make_unique<PiperPhonemizeLexicon>(
mgr, config_.model.vits.tokens, config_.model.vits.data_dir,
meta_data);
} else {
if (config_.model.vits.lexicon.empty()) {
SHERPA_ONNX_LOGE(
"Not a model using characters as modeling unit. Please provide "
"--vits-lexicon if you leave --vits-data-dir empty");
exit(-1);
}
frontend_ = std::make_unique<Lexicon>(
mgr, config_.model.vits.lexicon, config_.model.vits.tokens,
meta_data.punctuations, meta_data.language, config_.model.debug);
}
}
#endif
void InitFrontend() {
const auto &meta_data = model_->GetMetaData();
if (meta_data.frontend == "characters") {
frontend_ = std::make_unique<OfflineTtsCharacterFrontend>(
config_.model.vits.tokens, meta_data);
} else if ((meta_data.is_piper || meta_data.is_coqui) &&
!config_.model.vits.data_dir.empty()) {
frontend_ = std::make_unique<PiperPhonemizeLexicon>(
config_.model.vits.tokens, config_.model.vits.data_dir,
model_->GetMetaData());
} else {
if (config_.model.vits.lexicon.empty()) {
SHERPA_ONNX_LOGE(
"Not a model using characters as modeling unit. Please provide "
"--vits-lexicon if you leave --vits-data-dir empty");
exit(-1);
}
frontend_ = std::make_unique<Lexicon>(
config_.model.vits.lexicon, config_.model.vits.tokens,
meta_data.punctuations, meta_data.language, config_.model.debug);
}
}
std::vector<int64_t> AddBlank(const std::vector<int64_t> &x) const {
// we assume the blank ID is 0
std::vector<int64_t> buffer(x.size() * 2 + 1);
int32_t i = 1;
for (auto k : x) {
buffer[i] = k;
i += 2;
}
return buffer;
}
GeneratedAudio Process(const std::vector<std::vector<int64_t>> &tokens,
int32_t sid, float speed) const {
int32_t num_tokens = 0;
for (const auto &k : tokens) {
num_tokens += k.size();
}
std::vector<int64_t> x;
x.reserve(num_tokens);
for (const auto &k : tokens) {
x.insert(x.end(), k.begin(), k.end());
}
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 2> x_shape = {1, static_cast<int32_t>(x.size())};
Ort::Value x_tensor = Ort::Value::CreateTensor(
memory_info, x.data(), x.size(), x_shape.data(), x_shape.size());
Ort::Value audio = model_->Run(std::move(x_tensor), sid, speed);
std::vector<int64_t> audio_shape =
audio.GetTensorTypeAndShapeInfo().GetShape();
int64_t total = 1;
// The output shape may be (1, 1, total) or (1, total) or (total,)
for (auto i : audio_shape) {
total *= i;
}
const float *p = audio.GetTensorData<float>();
GeneratedAudio ans;
ans.sample_rate = model_->GetMetaData().sample_rate;
ans.samples = std::vector<float>(p, p + total);
return ans;
}
private:
OfflineTtsConfig config_;
std::unique_ptr<OfflineTtsVitsModel> model_;
std::vector<std::unique_ptr<kaldifst::TextNormalizer>> tn_list_;
std::unique_ptr<OfflineTtsFrontend> frontend_;
};
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_OFFLINE_TTS_VITS_IMPL_H_