online-zipformer-transducer-model-rknn.cc
23.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
// sherpa-onnx/csrc/rknn/online-zipformer-transducer-model-rknn.cc
//
// Copyright (c) 2025 Xiaomi Corporation
#include "sherpa-onnx/csrc/rknn/online-zipformer-transducer-model-rknn.h"
#include <memory>
#include <sstream>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#if __ANDROID_API__ >= 9
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif
#if __OHOS__
#include "rawfile/raw_file_manager.h"
#endif
#include "sherpa-onnx/csrc/file-utils.h"
#include "sherpa-onnx/csrc/rknn/macros.h"
#include "sherpa-onnx/csrc/rknn/utils.h"
#include "sherpa-onnx/csrc/text-utils.h"
namespace sherpa_onnx {
class OnlineZipformerTransducerModelRknn::Impl {
public:
~Impl() {
auto ret = rknn_destroy(encoder_ctx_);
if (ret != RKNN_SUCC) {
SHERPA_ONNX_LOGE("Failed to destroy the encoder context");
}
ret = rknn_destroy(decoder_ctx_);
if (ret != RKNN_SUCC) {
SHERPA_ONNX_LOGE("Failed to destroy the decoder context");
}
ret = rknn_destroy(joiner_ctx_);
if (ret != RKNN_SUCC) {
SHERPA_ONNX_LOGE("Failed to destroy the joiner context");
}
}
explicit Impl(const OnlineModelConfig &config) : config_(config) {
{
auto buf = ReadFile(config.transducer.encoder);
InitEncoder(buf.data(), buf.size());
}
{
auto buf = ReadFile(config.transducer.decoder);
InitDecoder(buf.data(), buf.size());
}
{
auto buf = ReadFile(config.transducer.joiner);
InitJoiner(buf.data(), buf.size());
}
// Now select which core to run for RK3588
int32_t ret_encoder = RKNN_SUCC;
int32_t ret_decoder = RKNN_SUCC;
int32_t ret_joiner = RKNN_SUCC;
switch (config_.num_threads) {
case 1:
ret_encoder = rknn_set_core_mask(encoder_ctx_, RKNN_NPU_CORE_AUTO);
ret_decoder = rknn_set_core_mask(decoder_ctx_, RKNN_NPU_CORE_AUTO);
ret_joiner = rknn_set_core_mask(joiner_ctx_, RKNN_NPU_CORE_AUTO);
break;
case 0:
ret_encoder = rknn_set_core_mask(encoder_ctx_, RKNN_NPU_CORE_0);
ret_decoder = rknn_set_core_mask(decoder_ctx_, RKNN_NPU_CORE_0);
ret_joiner = rknn_set_core_mask(joiner_ctx_, RKNN_NPU_CORE_0);
break;
case -1:
ret_encoder = rknn_set_core_mask(encoder_ctx_, RKNN_NPU_CORE_1);
ret_decoder = rknn_set_core_mask(decoder_ctx_, RKNN_NPU_CORE_1);
ret_joiner = rknn_set_core_mask(joiner_ctx_, RKNN_NPU_CORE_1);
break;
case -2:
ret_encoder = rknn_set_core_mask(encoder_ctx_, RKNN_NPU_CORE_2);
ret_decoder = rknn_set_core_mask(decoder_ctx_, RKNN_NPU_CORE_2);
ret_joiner = rknn_set_core_mask(joiner_ctx_, RKNN_NPU_CORE_2);
break;
case -3:
ret_encoder = rknn_set_core_mask(encoder_ctx_, RKNN_NPU_CORE_0_1);
ret_decoder = rknn_set_core_mask(decoder_ctx_, RKNN_NPU_CORE_0_1);
ret_joiner = rknn_set_core_mask(joiner_ctx_, RKNN_NPU_CORE_0_1);
break;
case -4:
ret_encoder = rknn_set_core_mask(encoder_ctx_, RKNN_NPU_CORE_0_1_2);
ret_decoder = rknn_set_core_mask(decoder_ctx_, RKNN_NPU_CORE_0_1_2);
ret_joiner = rknn_set_core_mask(joiner_ctx_, RKNN_NPU_CORE_0_1_2);
break;
default:
SHERPA_ONNX_LOGE(
"Valid num_threads for rk npu is 1 (auto), 0 (core 0), -1 (core "
"1), -2 (core 2), -3 (core 0_1), -4 (core 0_1_2). Given: %d",
config_.num_threads);
break;
}
if (ret_encoder != RKNN_SUCC) {
SHERPA_ONNX_LOGE(
"Failed to select npu core to run encoder (You can ignore it if you "
"are not using RK3588.");
}
if (ret_decoder != RKNN_SUCC) {
SHERPA_ONNX_LOGE(
"Failed to select npu core to run decoder (You can ignore it if you "
"are not using RK3588.");
}
if (ret_decoder != RKNN_SUCC) {
SHERPA_ONNX_LOGE(
"Failed to select npu core to run joiner (You can ignore it if you "
"are not using RK3588.");
}
}
// TODO(fangjun): Support Android
std::vector<std::vector<uint8_t>> GetEncoderInitStates() const {
// encoder_input_attrs_[0] is for the feature
// encoder_input_attrs_[1:] is for states
// so we use -1 here
std::vector<std::vector<uint8_t>> states(encoder_input_attrs_.size() - 1);
int32_t i = -1;
for (auto &attr : encoder_input_attrs_) {
i += 1;
if (i == 0) {
// skip processing the attr for features.
continue;
}
if (attr.type == RKNN_TENSOR_FLOAT16) {
states[i - 1].resize(attr.n_elems * sizeof(float));
} else if (attr.type == RKNN_TENSOR_INT64) {
states[i - 1].resize(attr.n_elems * sizeof(int64_t));
} else {
SHERPA_ONNX_LOGE("Unsupported tensor type: %d, %s", attr.type,
get_type_string(attr.type));
SHERPA_ONNX_EXIT(-1);
}
}
return states;
}
std::pair<std::vector<float>, std::vector<std::vector<uint8_t>>> RunEncoder(
std::vector<float> features,
std::vector<std::vector<uint8_t>> states) const {
std::vector<rknn_input> inputs(encoder_input_attrs_.size());
for (int32_t i = 0; i < static_cast<int32_t>(inputs.size()); ++i) {
auto &input = inputs[i];
auto &attr = encoder_input_attrs_[i];
input.index = attr.index;
if (attr.type == RKNN_TENSOR_FLOAT16) {
input.type = RKNN_TENSOR_FLOAT32;
} else if (attr.type == RKNN_TENSOR_INT64) {
input.type = RKNN_TENSOR_INT64;
} else {
SHERPA_ONNX_LOGE("Unsupported tensor type %d, %s", attr.type,
get_type_string(attr.type));
SHERPA_ONNX_EXIT(-1);
}
input.fmt = attr.fmt;
if (i == 0) {
input.buf = reinterpret_cast<void *>(features.data());
input.size = features.size() * sizeof(float);
} else {
input.buf = reinterpret_cast<void *>(states[i - 1].data());
input.size = states[i - 1].size();
}
}
std::vector<float> encoder_out(encoder_output_attrs_[0].n_elems);
// Note(fangjun): We can reuse the memory from input argument `states`
// auto next_states = GetEncoderInitStates();
auto &next_states = states;
std::vector<rknn_output> outputs(encoder_output_attrs_.size());
for (int32_t i = 0; i < outputs.size(); ++i) {
auto &output = outputs[i];
auto &attr = encoder_output_attrs_[i];
output.index = attr.index;
output.is_prealloc = 1;
if (attr.type == RKNN_TENSOR_FLOAT16) {
output.want_float = 1;
} else if (attr.type == RKNN_TENSOR_INT64) {
output.want_float = 0;
} else {
SHERPA_ONNX_LOGE("Unsupported tensor type %d, %s", attr.type,
get_type_string(attr.type));
SHERPA_ONNX_EXIT(-1);
}
if (i == 0) {
output.size = encoder_out.size() * sizeof(float);
output.buf = reinterpret_cast<void *>(encoder_out.data());
} else {
output.size = next_states[i - 1].size();
output.buf = reinterpret_cast<void *>(next_states[i - 1].data());
}
}
auto ret = rknn_inputs_set(encoder_ctx_, inputs.size(), inputs.data());
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to set encoder inputs");
ret = rknn_run(encoder_ctx_, nullptr);
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to run encoder");
ret =
rknn_outputs_get(encoder_ctx_, outputs.size(), outputs.data(), nullptr);
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get encoder output");
for (int32_t i = 0; i < next_states.size(); ++i) {
const auto &attr = encoder_input_attrs_[i + 1];
if (attr.n_dims == 4) {
// TODO(fangjun): The ConvertNCHWtoNHWC is copied from
// https://github.com/airockchip/rknn_model_zoo/blob/main/examples/zipformer/cpp/process.cc#L22
// I don't understand why we need to do that.
std::vector<uint8_t> dst(next_states[i].size());
int32_t n = attr.dims[0];
int32_t h = attr.dims[1];
int32_t w = attr.dims[2];
int32_t c = attr.dims[3];
ConvertNCHWtoNHWC(
reinterpret_cast<const float *>(next_states[i].data()), n, c, h, w,
reinterpret_cast<float *>(dst.data()));
next_states[i] = std::move(dst);
}
}
return {std::move(encoder_out), std::move(next_states)};
}
std::vector<float> RunDecoder(std::vector<int64_t> decoder_input) const {
auto &attr = decoder_input_attrs_[0];
rknn_input input;
input.index = 0;
input.type = RKNN_TENSOR_INT64;
input.fmt = attr.fmt;
input.buf = decoder_input.data();
input.size = decoder_input.size() * sizeof(int64_t);
std::vector<float> decoder_out(decoder_output_attrs_[0].n_elems);
rknn_output output;
output.index = decoder_output_attrs_[0].index;
output.is_prealloc = 1;
output.want_float = 1;
output.size = decoder_out.size() * sizeof(float);
output.buf = decoder_out.data();
auto ret = rknn_inputs_set(decoder_ctx_, 1, &input);
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to set decoder inputs");
ret = rknn_run(decoder_ctx_, nullptr);
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to run decoder");
ret = rknn_outputs_get(decoder_ctx_, 1, &output, nullptr);
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get decoder output");
return decoder_out;
}
std::vector<float> RunJoiner(const float *encoder_out,
const float *decoder_out) const {
std::vector<rknn_input> inputs(2);
inputs[0].index = 0;
inputs[0].type = RKNN_TENSOR_FLOAT32;
inputs[0].fmt = joiner_input_attrs_[0].fmt;
inputs[0].buf = const_cast<float *>(encoder_out);
inputs[0].size = joiner_input_attrs_[0].n_elems * sizeof(float);
inputs[1].index = 1;
inputs[1].type = RKNN_TENSOR_FLOAT32;
inputs[1].fmt = joiner_input_attrs_[1].fmt;
inputs[1].buf = const_cast<float *>(decoder_out);
inputs[1].size = joiner_input_attrs_[1].n_elems * sizeof(float);
std::vector<float> joiner_out(joiner_output_attrs_[0].n_elems);
rknn_output output;
output.index = joiner_output_attrs_[0].index;
output.is_prealloc = 1;
output.want_float = 1;
output.size = joiner_out.size() * sizeof(float);
output.buf = joiner_out.data();
auto ret = rknn_inputs_set(joiner_ctx_, inputs.size(), inputs.data());
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to set joiner inputs");
ret = rknn_run(joiner_ctx_, nullptr);
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to run joiner");
ret = rknn_outputs_get(joiner_ctx_, 1, &output, nullptr);
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get joiner output");
return joiner_out;
}
int32_t ContextSize() const { return context_size_; }
int32_t ChunkSize() const { return T_; }
int32_t ChunkShift() const { return decode_chunk_len_; }
int32_t VocabSize() const { return vocab_size_; }
rknn_tensor_attr GetEncoderOutAttr() const {
return encoder_output_attrs_[0];
}
private:
void InitEncoder(void *model_data, size_t model_data_length) {
auto ret =
rknn_init(&encoder_ctx_, model_data, model_data_length, 0, nullptr);
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to init encoder '%s'",
config_.transducer.encoder.c_str());
if (config_.debug) {
rknn_sdk_version v;
ret = rknn_query(encoder_ctx_, RKNN_QUERY_SDK_VERSION, &v, sizeof(v));
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get rknn sdk version");
SHERPA_ONNX_LOGE("sdk api version: %s, driver version: %s", v.api_version,
v.drv_version);
}
rknn_input_output_num io_num;
ret = rknn_query(encoder_ctx_, RKNN_QUERY_IN_OUT_NUM, &io_num,
sizeof(io_num));
SHERPA_ONNX_RKNN_CHECK(ret,
"Failed to get I/O information for the encoder");
if (config_.debug) {
SHERPA_ONNX_LOGE("encoder: %d inputs, %d outputs",
static_cast<int32_t>(io_num.n_input),
static_cast<int32_t>(io_num.n_output));
}
encoder_input_attrs_.resize(io_num.n_input);
encoder_output_attrs_.resize(io_num.n_output);
int32_t i = 0;
for (auto &attr : encoder_input_attrs_) {
memset(&attr, 0, sizeof(attr));
attr.index = i;
ret =
rknn_query(encoder_ctx_, RKNN_QUERY_INPUT_ATTR, &attr, sizeof(attr));
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get attr for encoder input %d", i);
i += 1;
}
if (config_.debug) {
std::ostringstream os;
std::string sep;
for (auto &attr : encoder_input_attrs_) {
os << sep << ToString(attr);
sep = "\n";
}
SHERPA_ONNX_LOGE("\n----------Encoder inputs info----------\n%s",
os.str().c_str());
}
i = 0;
for (auto &attr : encoder_output_attrs_) {
memset(&attr, 0, sizeof(attr));
attr.index = i;
ret =
rknn_query(encoder_ctx_, RKNN_QUERY_OUTPUT_ATTR, &attr, sizeof(attr));
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get attr for encoder output %d",
i);
i += 1;
}
if (config_.debug) {
std::ostringstream os;
std::string sep;
for (auto &attr : encoder_output_attrs_) {
os << sep << ToString(attr);
sep = "\n";
}
SHERPA_ONNX_LOGE("\n----------Encoder outputs info----------\n%s",
os.str().c_str());
}
rknn_custom_string custom_string;
ret = rknn_query(encoder_ctx_, RKNN_QUERY_CUSTOM_STRING, &custom_string,
sizeof(custom_string));
SHERPA_ONNX_RKNN_CHECK(
ret, "Failed to read custom string from the encoder model");
if (config_.debug) {
SHERPA_ONNX_LOGE("customs string: %s", custom_string.string);
}
auto meta = Parse(custom_string);
if (config_.debug) {
for (const auto &p : meta) {
SHERPA_ONNX_LOGE("%s: %s", p.first.c_str(), p.second.c_str());
}
}
if (meta.count("encoder_dims")) {
SplitStringToIntegers(meta.at("encoder_dims"), ",", false,
&encoder_dims_);
}
if (meta.count("attention_dims")) {
SplitStringToIntegers(meta.at("attention_dims"), ",", false,
&attention_dims_);
}
if (meta.count("num_encoder_layers")) {
SplitStringToIntegers(meta.at("num_encoder_layers"), ",", false,
&num_encoder_layers_);
}
if (meta.count("cnn_module_kernels")) {
SplitStringToIntegers(meta.at("cnn_module_kernels"), ",", false,
&cnn_module_kernels_);
}
if (meta.count("left_context_len")) {
SplitStringToIntegers(meta.at("left_context_len"), ",", false,
&left_context_len_);
}
if (meta.count("T")) {
T_ = atoi(meta.at("T").c_str());
}
if (meta.count("decode_chunk_len")) {
decode_chunk_len_ = atoi(meta.at("decode_chunk_len").c_str());
}
if (meta.count("context_size")) {
context_size_ = atoi(meta.at("context_size").c_str());
}
if (config_.debug) {
auto print = [](const std::vector<int32_t> &v, const char *name) {
std::ostringstream os;
os << name << ": ";
for (auto i : v) {
os << i << " ";
}
#if __OHOS__
SHERPA_ONNX_LOGE("%{public}s\n", os.str().c_str());
#else
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
#endif
};
print(encoder_dims_, "encoder_dims");
print(attention_dims_, "attention_dims");
print(num_encoder_layers_, "num_encoder_layers");
print(cnn_module_kernels_, "cnn_module_kernels");
print(left_context_len_, "left_context_len");
#if __OHOS__
SHERPA_ONNX_LOGE("T: %{public}d", T_);
SHERPA_ONNX_LOGE("decode_chunk_len_: %{public}d", decode_chunk_len_);
#else
SHERPA_ONNX_LOGE("T: %d", T_);
SHERPA_ONNX_LOGE("decode_chunk_len_: %d", decode_chunk_len_);
#endif
}
}
void InitDecoder(void *model_data, size_t model_data_length) {
auto ret =
rknn_init(&decoder_ctx_, model_data, model_data_length, 0, nullptr);
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to init decoder '%s'",
config_.transducer.decoder.c_str());
rknn_input_output_num io_num;
ret = rknn_query(decoder_ctx_, RKNN_QUERY_IN_OUT_NUM, &io_num,
sizeof(io_num));
SHERPA_ONNX_RKNN_CHECK(ret,
"Failed to get I/O information for the decoder");
if (io_num.n_input != 1) {
SHERPA_ONNX_LOGE("Expect only 1 decoder input. Given %d",
static_cast<int32_t>(io_num.n_input));
SHERPA_ONNX_EXIT(-1);
}
if (io_num.n_output != 1) {
SHERPA_ONNX_LOGE("Expect only 1 decoder output. Given %d",
static_cast<int32_t>(io_num.n_output));
SHERPA_ONNX_EXIT(-1);
}
if (config_.debug) {
SHERPA_ONNX_LOGE("decoder: %d inputs, %d outputs",
static_cast<int32_t>(io_num.n_input),
static_cast<int32_t>(io_num.n_output));
}
decoder_input_attrs_.resize(io_num.n_input);
decoder_output_attrs_.resize(io_num.n_output);
int32_t i = 0;
for (auto &attr : decoder_input_attrs_) {
memset(&attr, 0, sizeof(attr));
attr.index = i;
ret =
rknn_query(decoder_ctx_, RKNN_QUERY_INPUT_ATTR, &attr, sizeof(attr));
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get attr for decoder input %d", i);
i += 1;
}
if (config_.debug) {
std::ostringstream os;
std::string sep;
for (auto &attr : decoder_input_attrs_) {
os << sep << ToString(attr);
sep = "\n";
}
SHERPA_ONNX_LOGE("\n----------Decoder inputs info----------\n%s",
os.str().c_str());
}
if (decoder_input_attrs_[0].type != RKNN_TENSOR_INT64) {
SHERPA_ONNX_LOGE("Expect int64 for decoder input. Given: %d, %s",
decoder_input_attrs_[0].type,
get_type_string(decoder_input_attrs_[0].type));
SHERPA_ONNX_EXIT(-1);
}
context_size_ = decoder_input_attrs_[0].dims[1];
if (config_.debug) {
SHERPA_ONNX_LOGE("context_size: %d", context_size_);
}
i = 0;
for (auto &attr : decoder_output_attrs_) {
memset(&attr, 0, sizeof(attr));
attr.index = i;
ret =
rknn_query(decoder_ctx_, RKNN_QUERY_OUTPUT_ATTR, &attr, sizeof(attr));
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get attr for decoder output %d",
i);
i += 1;
}
if (config_.debug) {
std::ostringstream os;
std::string sep;
for (auto &attr : decoder_output_attrs_) {
os << sep << ToString(attr);
sep = "\n";
}
SHERPA_ONNX_LOGE("\n----------Decoder outputs info----------\n%s",
os.str().c_str());
}
}
void InitJoiner(void *model_data, size_t model_data_length) {
auto ret =
rknn_init(&joiner_ctx_, model_data, model_data_length, 0, nullptr);
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to init joiner '%s'",
config_.transducer.joiner.c_str());
rknn_input_output_num io_num;
ret =
rknn_query(joiner_ctx_, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get I/O information for the joiner");
if (config_.debug) {
SHERPA_ONNX_LOGE("joiner: %d inputs, %d outputs",
static_cast<int32_t>(io_num.n_input),
static_cast<int32_t>(io_num.n_output));
}
joiner_input_attrs_.resize(io_num.n_input);
joiner_output_attrs_.resize(io_num.n_output);
int32_t i = 0;
for (auto &attr : joiner_input_attrs_) {
memset(&attr, 0, sizeof(attr));
attr.index = i;
ret = rknn_query(joiner_ctx_, RKNN_QUERY_INPUT_ATTR, &attr, sizeof(attr));
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get attr for joiner input %d", i);
i += 1;
}
if (config_.debug) {
std::ostringstream os;
std::string sep;
for (auto &attr : joiner_input_attrs_) {
os << sep << ToString(attr);
sep = "\n";
}
SHERPA_ONNX_LOGE("\n----------Joiner inputs info----------\n%s",
os.str().c_str());
}
i = 0;
for (auto &attr : joiner_output_attrs_) {
memset(&attr, 0, sizeof(attr));
attr.index = i;
ret =
rknn_query(joiner_ctx_, RKNN_QUERY_OUTPUT_ATTR, &attr, sizeof(attr));
SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get attr for joiner output %d", i);
i += 1;
}
if (config_.debug) {
std::ostringstream os;
std::string sep;
for (auto &attr : joiner_output_attrs_) {
os << sep << ToString(attr);
sep = "\n";
}
SHERPA_ONNX_LOGE("\n----------Joiner outputs info----------\n%s",
os.str().c_str());
}
vocab_size_ = joiner_output_attrs_[0].dims[1];
if (config_.debug) {
SHERPA_ONNX_LOGE("vocab_size: %d", vocab_size_);
}
}
private:
OnlineModelConfig config_;
rknn_context encoder_ctx_ = 0;
rknn_context decoder_ctx_ = 0;
rknn_context joiner_ctx_ = 0;
std::vector<rknn_tensor_attr> encoder_input_attrs_;
std::vector<rknn_tensor_attr> encoder_output_attrs_;
std::vector<rknn_tensor_attr> decoder_input_attrs_;
std::vector<rknn_tensor_attr> decoder_output_attrs_;
std::vector<rknn_tensor_attr> joiner_input_attrs_;
std::vector<rknn_tensor_attr> joiner_output_attrs_;
std::vector<int32_t> encoder_dims_;
std::vector<int32_t> attention_dims_;
std::vector<int32_t> num_encoder_layers_;
std::vector<int32_t> cnn_module_kernels_;
std::vector<int32_t> left_context_len_;
int32_t T_ = 0;
int32_t decode_chunk_len_ = 0;
int32_t context_size_ = 2;
int32_t vocab_size_ = 0;
};
OnlineZipformerTransducerModelRknn::~OnlineZipformerTransducerModelRknn() =
default;
OnlineZipformerTransducerModelRknn::OnlineZipformerTransducerModelRknn(
const OnlineModelConfig &config)
: impl_(std::make_unique<Impl>(config)) {}
template <typename Manager>
OnlineZipformerTransducerModelRknn::OnlineZipformerTransducerModelRknn(
Manager *mgr, const OnlineModelConfig &config)
: impl_(std::make_unique<OnlineZipformerTransducerModelRknn>(mgr, config)) {
}
std::vector<std::vector<uint8_t>>
OnlineZipformerTransducerModelRknn::GetEncoderInitStates() const {
return impl_->GetEncoderInitStates();
}
std::pair<std::vector<float>, std::vector<std::vector<uint8_t>>>
OnlineZipformerTransducerModelRknn::RunEncoder(
std::vector<float> features,
std::vector<std::vector<uint8_t>> states) const {
return impl_->RunEncoder(std::move(features), std::move(states));
}
std::vector<float> OnlineZipformerTransducerModelRknn::RunDecoder(
std::vector<int64_t> decoder_input) const {
return impl_->RunDecoder(std::move(decoder_input));
}
std::vector<float> OnlineZipformerTransducerModelRknn::RunJoiner(
const float *encoder_out, const float *decoder_out) const {
return impl_->RunJoiner(encoder_out, decoder_out);
}
int32_t OnlineZipformerTransducerModelRknn::ContextSize() const {
return impl_->ContextSize();
}
int32_t OnlineZipformerTransducerModelRknn::ChunkSize() const {
return impl_->ChunkSize();
}
int32_t OnlineZipformerTransducerModelRknn::ChunkShift() const {
return impl_->ChunkShift();
}
int32_t OnlineZipformerTransducerModelRknn::VocabSize() const {
return impl_->VocabSize();
}
rknn_tensor_attr OnlineZipformerTransducerModelRknn::GetEncoderOutAttr() const {
return impl_->GetEncoderOutAttr();
}
#if __ANDROID_API__ >= 9
template OnlineZipformerTransducerModelRknn::OnlineZipformerTransducerModelRknn(
AAssetManager *mgr, const OnlineModelConfig &config);
#endif
#if __OHOS__
template OnlineZipformerTransducerModelRknn::OnlineZipformerTransducerModelRknn(
NativeResourceManager *mgr, const OnlineModelConfig &config);
#endif
} // namespace sherpa_onnx