keyword-spotter.py
6.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#!/usr/bin/env python3
"""
This file demonstrates how to use sherpa-onnx Python API to do keyword spotting
from wave file(s).
Please refer to
https://k2-fsa.github.io/sherpa/onnx/kws/pretrained_models/index.html
to download pre-trained models.
"""
import argparse
import time
import wave
from pathlib import Path
from typing import List, Tuple
import numpy as np
import sherpa_onnx
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--tokens",
type=str,
help="Path to tokens.txt",
)
parser.add_argument(
"--encoder",
type=str,
help="Path to the transducer encoder model",
)
parser.add_argument(
"--decoder",
type=str,
help="Path to the transducer decoder model",
)
parser.add_argument(
"--joiner",
type=str,
help="Path to the transducer joiner model",
)
parser.add_argument(
"--num-threads",
type=int,
default=1,
help="Number of threads for neural network computation",
)
parser.add_argument(
"--provider",
type=str,
default="cpu",
help="Valid values: cpu, cuda, coreml",
)
parser.add_argument(
"--max-active-paths",
type=int,
default=4,
help="""
It specifies number of active paths to keep during decoding.
""",
)
parser.add_argument(
"--num-trailing-blanks",
type=int,
default=1,
help="""The number of trailing blanks a keyword should be followed. Setting
to a larger value (e.g. 8) when your keywords has overlapping tokens
between each other.
""",
)
parser.add_argument(
"--keywords-file",
type=str,
help="""
The file containing keywords, one words/phrases per line, and for each
phrase the bpe/cjkchar/pinyin are separated by a space. For example:
▁HE LL O ▁WORLD
x iǎo ài t óng x ué
""",
)
parser.add_argument(
"--keywords-score",
type=float,
default=1.0,
help="""
The boosting score of each token for keywords. The larger the easier to
survive beam search.
""",
)
parser.add_argument(
"--keywords-threshold",
type=float,
default=0.25,
help="""
The trigger threshold (i.e. probability) of the keyword. The larger the
harder to trigger.
""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to decode. Each file must be of WAVE"
"format with a single channel, and each sample has 16-bit, "
"i.e., int16_t. "
"The sample rate of the file can be arbitrary and does not need to "
"be 16 kHz",
)
return parser.parse_args()
def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/kws/pretrained_models/index.html to download it"
)
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
"""
Args:
wave_filename:
Path to a wave file. It should be single channel and each sample should
be 16-bit. Its sample rate does not need to be 16kHz.
Returns:
Return a tuple containing:
- A 1-D array of dtype np.float32 containing the samples, which are
normalized to the range [-1, 1].
- sample rate of the wave file
"""
with wave.open(wave_filename) as f:
assert f.getnchannels() == 1, f.getnchannels()
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes
num_samples = f.getnframes()
samples = f.readframes(num_samples)
samples_int16 = np.frombuffer(samples, dtype=np.int16)
samples_float32 = samples_int16.astype(np.float32)
samples_float32 = samples_float32 / 32768
return samples_float32, f.getframerate()
def main():
args = get_args()
assert_file_exists(args.tokens)
assert_file_exists(args.encoder)
assert_file_exists(args.decoder)
assert_file_exists(args.joiner)
assert Path(
args.keywords_file
).is_file(), (
f"keywords_file : {args.keywords_file} not exist, please provide a valid path."
)
keyword_spotter = sherpa_onnx.KeywordSpotter(
tokens=args.tokens,
encoder=args.encoder,
decoder=args.decoder,
joiner=args.joiner,
num_threads=args.num_threads,
max_active_paths=args.max_active_paths,
keywords_file=args.keywords_file,
keywords_score=args.keywords_score,
keywords_threshold=args.keywords_threshold,
num_trailing_blanks=args.num_trailing_blanks,
provider=args.provider,
)
print("Started!")
start_time = time.time()
streams = []
total_duration = 0
for wave_filename in args.sound_files:
assert_file_exists(wave_filename)
samples, sample_rate = read_wave(wave_filename)
duration = len(samples) / sample_rate
total_duration += duration
s = keyword_spotter.create_stream()
s.accept_waveform(sample_rate, samples)
tail_paddings = np.zeros(int(0.66 * sample_rate), dtype=np.float32)
s.accept_waveform(sample_rate, tail_paddings)
s.input_finished()
streams.append(s)
results = [""] * len(streams)
while True:
ready_list = []
for i, s in enumerate(streams):
if keyword_spotter.is_ready(s):
ready_list.append(s)
r = keyword_spotter.get_result(s)
if r:
results[i] += f"{r}/"
print(f"{r} is detected.")
if len(ready_list) == 0:
break
keyword_spotter.decode_streams(ready_list)
end_time = time.time()
print("Done!")
for wave_filename, result in zip(args.sound_files, results):
print(f"{wave_filename}\n{result}")
print("-" * 10)
elapsed_seconds = end_time - start_time
rtf = elapsed_seconds / total_duration
print(f"num_threads: {args.num_threads}")
print(f"Wave duration: {total_duration:.3f} s")
print(f"Elapsed time: {elapsed_seconds:.3f} s")
print(
f"Real time factor (RTF): {elapsed_seconds:.3f}/{total_duration:.3f} = {rtf:.3f}"
)
if __name__ == "__main__":
main()