speaker-identification-with-vad-non-streaming-asr-alsa.py 14.0 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
#!/usr/bin/env python3

"""
This script works only on Linux. It uses ALSA for recording.

This script shows how to use Python APIs for speaker identification with
a microphone, a VAD model, and a non-streaming ASR model.

Please see also ./generate-subtitles.py

Usage:

(1) Prepare a text file containing speaker related files.

Each line in the text file contains two columns. The first column is the
speaker name, while the second column contains the wave file of the speaker.

If the text file contains multiple wave files for the same speaker, then the
embeddings of these files are averaged.

An example text file is given below:

    foo /path/to/a.wav
    bar /path/to/b.wav
    foo /path/to/c.wav
    foobar /path/to/d.wav

Each wave file should contain only a single channel; the sample format
should be int16_t; the sample rate can be arbitrary.

(2) Download a model for computing speaker embeddings

Please visit
https://github.com/k2-fsa/sherpa-onnx/releases/tag/speaker-recongition-models
to download a model. An example is given below:

    wget https://github.com/k2-fsa/sherpa-onnx/releases/download/speaker-recongition-models/wespeaker_zh_cnceleb_resnet34.onnx

Note that `zh` means Chinese, while `en` means English.

(3) Download the VAD model
Please visit
https://github.com/snakers4/silero-vad/raw/master/src/silero_vad/data/silero_vad.onnx
to download silero_vad.onnx

For instance,

wget https://github.com/snakers4/silero-vad/raw/master/src/silero_vad/data/silero_vad.onnx

(4) Please refer to ./generate-subtitles.py
to download a non-streaming ASR model.

(5) Run this script

Assume the filename of the text file is speaker.txt.

python3 ./python-api-examples/speaker-identification-with-vad-non-streaming-asr.py \
  --silero-vad-model=/path/to/silero_vad.onnx \
  --speaker-file ./speaker.txt \
  --model ./wespeaker_zh_cnceleb_resnet34.onnx
"""
import argparse
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple

import numpy as np
import sherpa_onnx
import soundfile as sf

g_sample_rate = 16000


def register_non_streaming_asr_model_args(parser):
    parser.add_argument(
        "--tokens",
        type=str,
        help="Path to tokens.txt",
    )

    parser.add_argument(
        "--encoder",
        default="",
        type=str,
        help="Path to the transducer encoder model",
    )

    parser.add_argument(
        "--decoder",
        default="",
        type=str,
        help="Path to the transducer decoder model",
    )

    parser.add_argument(
        "--joiner",
        default="",
        type=str,
        help="Path to the transducer joiner model",
    )

    parser.add_argument(
        "--paraformer",
        default="",
        type=str,
        help="Path to the model.onnx from Paraformer",
    )

    parser.add_argument(
        "--wenet-ctc",
        default="",
        type=str,
        help="Path to the CTC model.onnx from WeNet",
    )

    parser.add_argument(
        "--whisper-encoder",
        default="",
        type=str,
        help="Path to whisper encoder model",
    )

    parser.add_argument(
        "--whisper-decoder",
        default="",
        type=str,
        help="Path to whisper decoder model",
    )

    parser.add_argument(
        "--whisper-language",
        default="",
        type=str,
        help="""It specifies the spoken language in the input file.
        Example values: en, fr, de, zh, jp.
        Available languages for multilingual models can be found at
        https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10
        If not specified, we infer the language from the input audio file.
        """,
    )

    parser.add_argument(
        "--whisper-task",
        default="transcribe",
        choices=["transcribe", "translate"],
        type=str,
        help="""For multilingual models, if you specify translate, the output
        will be in English.
        """,
    )

    parser.add_argument(
        "--whisper-tail-paddings",
        default=-1,
        type=int,
        help="""Number of tail padding frames.
        We have removed the 30-second constraint from whisper, so you need to
        choose the amount of tail padding frames by yourself.
        Use -1 to use a default value for tail padding.
        """,
    )

    parser.add_argument(
        "--decoding-method",
        type=str,
        default="greedy_search",
        help="""Valid values are greedy_search and modified_beam_search.
        modified_beam_search is valid only for transducer models.
        """,
    )

    parser.add_argument(
        "--feature-dim",
        type=int,
        default=80,
        help="Feature dimension. Must match the one expected by the model",
    )


def get_args():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )

    register_non_streaming_asr_model_args(parser)

    parser.add_argument(
        "--speaker-file",
        type=str,
        required=True,
        help="""Path to the speaker file. Read the help doc at the beginning of this
        file for the format.""",
    )

    parser.add_argument(
        "--model",
        type=str,
        required=True,
        help="Path to the speaker embedding model file.",
    )

    parser.add_argument(
        "--silero-vad-model",
        type=str,
        required=True,
        help="Path to silero_vad.onnx",
    )

    parser.add_argument("--threshold", type=float, default=0.6)

    parser.add_argument(
        "--num-threads",
        type=int,
        default=1,
        help="Number of threads for neural network computation",
    )

    parser.add_argument(
        "--debug",
        type=bool,
        default=False,
        help="True to show debug messages",
    )

    parser.add_argument(
        "--provider",
        type=str,
        default="cpu",
        help="Valid values: cpu, cuda, coreml",
    )

    parser.add_argument(
        "--device-name",
        type=str,
        required=True,
        help="""
The device name specifies which microphone to use in case there are several
on your system. You can use

  arecord -l

to find all available microphones on your computer. For instance, if it outputs

**** List of CAPTURE Hardware Devices ****
card 3: UACDemoV10 [UACDemoV1.0], device 0: USB Audio [USB Audio]
  Subdevices: 1/1
  Subdevice #0: subdevice #0

and if you want to select card 3 and device 0 on that card, please use:

  plughw:3,0

as the device_name.
        """,
    )

    return parser.parse_args()


def assert_file_exists(filename: str):
    assert Path(filename).is_file(), (
        f"{filename} does not exist!\n"
        "Please refer to "
        "https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
    )


def create_recognizer(args) -> sherpa_onnx.OfflineRecognizer:
    if args.encoder:
        assert len(args.paraformer) == 0, args.paraformer
        assert len(args.wenet_ctc) == 0, args.wenet_ctc
        assert len(args.whisper_encoder) == 0, args.whisper_encoder
        assert len(args.whisper_decoder) == 0, args.whisper_decoder

        assert_file_exists(args.encoder)
        assert_file_exists(args.decoder)
        assert_file_exists(args.joiner)

        recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
            encoder=args.encoder,
            decoder=args.decoder,
            joiner=args.joiner,
            tokens=args.tokens,
            num_threads=args.num_threads,
            sample_rate=args.sample_rate,
            feature_dim=args.feature_dim,
            decoding_method=args.decoding_method,
            debug=args.debug,
        )
    elif args.paraformer:
        assert len(args.wenet_ctc) == 0, args.wenet_ctc
        assert len(args.whisper_encoder) == 0, args.whisper_encoder
        assert len(args.whisper_decoder) == 0, args.whisper_decoder

        assert_file_exists(args.paraformer)

        recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
            paraformer=args.paraformer,
            tokens=args.tokens,
            num_threads=args.num_threads,
            sample_rate=g_sample_rate,
            feature_dim=args.feature_dim,
            decoding_method=args.decoding_method,
            debug=args.debug,
        )
    elif args.wenet_ctc:
        assert len(args.whisper_encoder) == 0, args.whisper_encoder
        assert len(args.whisper_decoder) == 0, args.whisper_decoder

        assert_file_exists(args.wenet_ctc)

        recognizer = sherpa_onnx.OfflineRecognizer.from_wenet_ctc(
            model=args.wenet_ctc,
            tokens=args.tokens,
            num_threads=args.num_threads,
            sample_rate=args.sample_rate,
            feature_dim=args.feature_dim,
            decoding_method=args.decoding_method,
            debug=args.debug,
        )
    elif args.whisper_encoder:
        assert_file_exists(args.whisper_encoder)
        assert_file_exists(args.whisper_decoder)

        recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
            encoder=args.whisper_encoder,
            decoder=args.whisper_decoder,
            tokens=args.tokens,
            num_threads=args.num_threads,
            decoding_method=args.decoding_method,
            debug=args.debug,
            language=args.whisper_language,
            task=args.whisper_task,
            tail_paddings=args.whisper_tail_paddings,
        )
    else:
        raise ValueError("Please specify at least one model")

    return recognizer


def load_speaker_embedding_model(args):
    config = sherpa_onnx.SpeakerEmbeddingExtractorConfig(
        model=args.model,
        num_threads=args.num_threads,
        debug=args.debug,
        provider=args.provider,
    )
    if not config.validate():
        raise ValueError(f"Invalid config. {config}")
    extractor = sherpa_onnx.SpeakerEmbeddingExtractor(config)
    return extractor


def load_speaker_file(args) -> Dict[str, List[str]]:
    if not Path(args.speaker_file).is_file():
        raise ValueError(f"--speaker-file {args.speaker_file} does not exist")

    ans = defaultdict(list)
    with open(args.speaker_file) as f:
        for line in f:
            line = line.strip()
            if not line:
                continue

            fields = line.split()
            if len(fields) != 2:
                raise ValueError(f"Invalid line: {line}. Fields: {fields}")

            speaker_name, filename = fields
            ans[speaker_name].append(filename)
    return ans


def load_audio(filename: str) -> Tuple[np.ndarray, int]:
    data, sample_rate = sf.read(
        filename,
        always_2d=True,
        dtype="float32",
    )
    data = data[:, 0]  # use only the first channel
    samples = np.ascontiguousarray(data)
    return samples, sample_rate


def compute_speaker_embedding(
    filenames: List[str],
    extractor: sherpa_onnx.SpeakerEmbeddingExtractor,
) -> np.ndarray:
    assert len(filenames) > 0, "filenames is empty"

    ans = None
    for filename in filenames:
        print(f"processing {filename}")
        samples, sample_rate = load_audio(filename)
        stream = extractor.create_stream()
        stream.accept_waveform(sample_rate=sample_rate, waveform=samples)
        stream.input_finished()

        assert extractor.is_ready(stream)
        embedding = extractor.compute(stream)
        embedding = np.array(embedding)
        if ans is None:
            ans = embedding
        else:
            ans += embedding

    return ans / len(filenames)


def main():
    args = get_args()
    print(args)

    device_name = args.device_name
    print(f"device_name: {device_name}")
    alsa = sherpa_onnx.Alsa(device_name)

    recognizer = create_recognizer(args)
    extractor = load_speaker_embedding_model(args)
    speaker_file = load_speaker_file(args)

    manager = sherpa_onnx.SpeakerEmbeddingManager(extractor.dim)
    for name, filename_list in speaker_file.items():
        embedding = compute_speaker_embedding(
            filenames=filename_list,
            extractor=extractor,
        )
        status = manager.add(name, embedding)
        if not status:
            raise RuntimeError(f"Failed to register speaker {name}")

    vad_config = sherpa_onnx.VadModelConfig()
    vad_config.silero_vad.model = args.silero_vad_model
    vad_config.silero_vad.min_silence_duration = 0.25
    vad_config.silero_vad.min_speech_duration = 0.25
    vad_config.sample_rate = g_sample_rate
    if not vad_config.validate():
        raise ValueError("Errors in vad config")

    window_size = vad_config.silero_vad.window_size

    vad = sherpa_onnx.VoiceActivityDetector(vad_config, buffer_size_in_seconds=100)

    samples_per_read = int(0.1 * g_sample_rate)  # 0.1 second = 100 ms

    print("Started! Please speak")

    idx = 0
    buffer = []
    while True:
        samples = alsa.read(samples_per_read)  # a blocking read
        samples = np.array(samples)
        buffer = np.concatenate([buffer, samples])
        while len(buffer) > window_size:
            vad.accept_waveform(buffer[:window_size])
            buffer = buffer[window_size:]

        while not vad.empty():
            if len(vad.front.samples) < 0.5 * g_sample_rate:
                # this segment is too short, skip it
                vad.pop()
                continue
            stream = extractor.create_stream()
            stream.accept_waveform(
                sample_rate=g_sample_rate, waveform=vad.front.samples
            )
            stream.input_finished()

            embedding = extractor.compute(stream)
            embedding = np.array(embedding)
            name = manager.search(embedding, threshold=args.threshold)
            if not name:
                name = "unknown"

            # Now for non-streaming ASR
            asr_stream = recognizer.create_stream()
            asr_stream.accept_waveform(
                sample_rate=g_sample_rate, waveform=vad.front.samples
            )
            recognizer.decode_stream(asr_stream)
            text = asr_stream.result.text

            vad.pop()

            print(f"\r{idx}-{name}: {text}")
            idx += 1


if __name__ == "__main__":
    try:
        main()
    except KeyboardInterrupt:
        print("\nCaught Ctrl + C. Exiting")