offline-nemo-parakeet-decode-file.py
1.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Example using the sherpa-onnx Python API and sherpa-onnx-nemo-parakeet-tdt-0.6b-v3-int8 model
# Prints recognized text, per-token timestamps, and durations
import os
import sys
import sherpa_onnx
import soundfile as sf
wav_filename = "./sherpa-onnx-nemo-parakeet-tdt-0.6b-v3-int8/test_wavs/en.wav"
encoder = "./sherpa-onnx-nemo-parakeet-tdt-0.6b-v3-int8/encoder.int8.onnx"
decoder = "./sherpa-onnx-nemo-parakeet-tdt-0.6b-v3-int8/decoder.int8.onnx"
joiner = "./sherpa-onnx-nemo-parakeet-tdt-0.6b-v3-int8/joiner.int8.onnx"
tokens = "./sherpa-onnx-nemo-parakeet-tdt-0.6b-v3-int8/tokens.txt"
if not os.path.exists(wav_filename):
print(f"File not found: {wav_filename}")
sys.exit(1)
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
encoder,
decoder,
joiner,
tokens,
num_threads=1,
provider="cpu",
debug=False,
decoding_method="greedy_search",
model_type="nemo_transducer"
)
audio, sample_rate = sf.read(wav_filename, dtype="float32", always_2d=True)
audio = audio[:, 0] # use first channel if multi-channel
stream = recognizer.create_stream()
stream.accept_waveform(sample_rate, audio)
recognizer.decode_stream(stream)
result = stream.result
print(f"Recognized text: {result.text}")
if hasattr(result, "tokens") and hasattr(result, "timestamps") and hasattr(result, "durations"):
print("Token\tTimestamp\tDuration")
for token, ts, dur in zip(result.tokens, result.timestamps, result.durations):
print(f"{token}\t{ts:.2f}\t{dur:.2f}")
else:
print("Timestamps or durations not available.")