sherpa-onnx-offline-parallel.cc
10.0 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
// sherpa-onnx/csrc/sherpa-onnx-offline-parallel.cc
//
// Copyright (c) 2022-2023 cuidc
#include <stdio.h>
#include <atomic>
#include <chrono> // NOLINT
#include <fstream>
#include <mutex> // NOLINT
#include <string>
#include <thread> // NOLINT
#include <vector>
#include "sherpa-onnx/csrc/offline-recognizer.h"
#include "sherpa-onnx/csrc/parse-options.h"
#include "sherpa-onnx/csrc/wave-reader.h"
std::atomic<int> wav_index(0);
std::mutex mtx;
std::vector<std::vector<std::string>> SplitToBatches(
const std::vector<std::string> &input, int32_t batch_size) {
std::vector<std::vector<std::string>> outputs;
auto itr = input.cbegin();
int32_t process_num = 0;
while (process_num + batch_size <= static_cast<int32_t>(input.size())) {
auto chunk_end = itr + batch_size;
outputs.emplace_back(itr, chunk_end);
itr = chunk_end;
process_num += batch_size;
}
if (itr != input.cend()) {
outputs.emplace_back(itr, input.cend());
}
return outputs;
}
std::vector<std::string> LoadScpFile(const std::string &wav_scp_path) {
std::vector<std::string> wav_paths;
std::ifstream in(wav_scp_path);
if (!in.is_open()) {
fprintf(stderr, "Failed to open file: %s.\n", wav_scp_path.c_str());
return wav_paths;
}
std::string line, column1, column2;
while (std::getline(in, line)) {
std::istringstream iss(line);
iss >> column1 >> column2;
wav_paths.emplace_back(std::move(column2));
}
return wav_paths;
}
void AsrInference(const std::vector<std::vector<std::string>> &chunk_wav_paths,
sherpa_onnx::OfflineRecognizer *recognizer,
float *total_length, float *total_time) {
std::vector<std::unique_ptr<sherpa_onnx::OfflineStream>> ss;
std::vector<sherpa_onnx::OfflineStream *> ss_pointers;
float duration = 0.0f;
float elapsed_seconds_batch = 0.0f;
// warm up
for (const auto &wav_filename : chunk_wav_paths[0]) {
int32_t sampling_rate = -1;
bool is_ok = false;
const std::vector<float> samples =
sherpa_onnx::ReadWave(wav_filename, &sampling_rate, &is_ok);
if (!is_ok) {
fprintf(stderr, "Failed to read '%s'\n", wav_filename.c_str());
continue;
}
duration += samples.size() / static_cast<float>(sampling_rate);
auto s = recognizer->CreateStream();
s->AcceptWaveform(sampling_rate, samples.data(), samples.size());
ss.push_back(std::move(s));
ss_pointers.push_back(ss.back().get());
}
recognizer->DecodeStreams(ss_pointers.data(), ss_pointers.size());
ss_pointers.clear();
ss.clear();
while (true) {
int chunk = wav_index.fetch_add(1);
if (chunk >= chunk_wav_paths.size()) {
break;
}
const auto &wav_paths = chunk_wav_paths[chunk];
const auto begin = std::chrono::steady_clock::now();
for (const auto &wav_filename : wav_paths) {
int32_t sampling_rate = -1;
bool is_ok = false;
const std::vector<float> samples =
sherpa_onnx::ReadWave(wav_filename, &sampling_rate, &is_ok);
if (!is_ok) {
fprintf(stderr, "Failed to read '%s'\n", wav_filename.c_str());
continue;
}
duration += samples.size() / static_cast<float>(sampling_rate);
auto s = recognizer->CreateStream();
s->AcceptWaveform(sampling_rate, samples.data(), samples.size());
ss.push_back(std::move(s));
ss_pointers.push_back(ss.back().get());
}
recognizer->DecodeStreams(ss_pointers.data(), ss_pointers.size());
const auto end = std::chrono::steady_clock::now();
float elapsed_seconds =
std::chrono::duration_cast<std::chrono::milliseconds>(end - begin)
.count() /
1000.;
elapsed_seconds_batch += elapsed_seconds;
int i = 0;
for (const auto &wav_filename : wav_paths) {
fprintf(stderr, "%s\n%s\n----\n", wav_filename.c_str(),
ss[i]->GetResult().AsJsonString().c_str());
i = i + 1;
}
ss_pointers.clear();
ss.clear();
}
{
std::lock_guard<std::mutex> guard(mtx);
*total_length += duration;
if (*total_time < elapsed_seconds_batch) {
*total_time = elapsed_seconds_batch;
}
}
}
int main(int32_t argc, char *argv[]) {
const char *kUsageMessage = R"usage(
Speech recognition using non-streaming models with sherpa-onnx.
Usage:
(1) Transducer from icefall
See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-transducer/index.html
./bin/sherpa-onnx-offline-parallel \
--tokens=/path/to/tokens.txt \
--encoder=/path/to/encoder.onnx \
--decoder=/path/to/decoder.onnx \
--joiner=/path/to/joiner.onnx \
--num-threads=1 \
--decoding-method=greedy_search \
--batch-size=8 \
--nj=1 \
--wav-scp=wav.scp
./bin/sherpa-onnx-offline-parallel \
--tokens=/path/to/tokens.txt \
--encoder=/path/to/encoder.onnx \
--decoder=/path/to/decoder.onnx \
--joiner=/path/to/joiner.onnx \
--num-threads=1 \
--decoding-method=greedy_search \
--batch-size=1 \
--nj=8 \
/path/to/foo.wav [bar.wav foobar.wav ...]
(2) Paraformer from FunASR
See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-paraformer/index.html
./bin/sherpa-onnx-offline-parallel \
--tokens=/path/to/tokens.txt \
--paraformer=/path/to/model.onnx \
--num-threads=1 \
--decoding-method=greedy_search \
/path/to/foo.wav [bar.wav foobar.wav ...]
(3) Whisper models
See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/whisper/tiny.en.html
./bin/sherpa-onnx-offline-parallel \
--whisper-encoder=./sherpa-onnx-whisper-base.en/base.en-encoder.int8.onnx \
--whisper-decoder=./sherpa-onnx-whisper-base.en/base.en-decoder.int8.onnx \
--tokens=./sherpa-onnx-whisper-base.en/base.en-tokens.txt \
--num-threads=1 \
/path/to/foo.wav [bar.wav foobar.wav ...]
(4) NeMo CTC models
See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-ctc/index.html
./bin/sherpa-onnx-offline-parallel \
--tokens=./sherpa-onnx-nemo-ctc-en-conformer-medium/tokens.txt \
--nemo-ctc-model=./sherpa-onnx-nemo-ctc-en-conformer-medium/model.onnx \
--num-threads=2 \
--decoding-method=greedy_search \
--debug=false \
./sherpa-onnx-nemo-ctc-en-conformer-medium/test_wavs/0.wav \
./sherpa-onnx-nemo-ctc-en-conformer-medium/test_wavs/1.wav \
./sherpa-onnx-nemo-ctc-en-conformer-medium/test_wavs/8k.wav
(5) TDNN CTC model for the yesno recipe from icefall
See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-ctc/yesno/index.html
//
./bin/sherpa-onnx-offline-parallel \
--sample-rate=8000 \
--feat-dim=23 \
--tokens=./sherpa-onnx-tdnn-yesno/tokens.txt \
--tdnn-model=./sherpa-onnx-tdnn-yesno/model-epoch-14-avg-2.onnx \
./sherpa-onnx-tdnn-yesno/test_wavs/0_0_0_1_0_0_0_1.wav \
./sherpa-onnx-tdnn-yesno/test_wavs/0_0_1_0_0_0_1_0.wav
Note: It supports decoding multiple files in batches
foo.wav should be of single channel, 16-bit PCM encoded wave file; its
sampling rate can be arbitrary and does not need to be 16kHz.
Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
for a list of pre-trained models to download.
)usage";
std::string wav_scp = ""; // file path, kaldi style wav list.
int32_t nj = 1; // thread number
int32_t batch_size = 1; // number of wav files processed at once.
sherpa_onnx::ParseOptions po(kUsageMessage);
sherpa_onnx::OfflineRecognizerConfig config;
config.Register(&po);
po.Register("wav-scp", &wav_scp,
"a file including wav-id and wav-path, kaldi style wav list."
"default="
". when it is not empty, wav files which positional "
"parameters provide are invalid.");
po.Register("nj", &nj, "multi-thread num for decoding, default=1");
po.Register("batch-size", &batch_size,
"number of wav files processed at once during the decoding"
"process. default=1");
po.Read(argc, argv);
if (po.NumArgs() < 1 && wav_scp.empty()) {
fprintf(stderr, "Error: Please provide at least 1 wave file.\n\n");
po.PrintUsage();
exit(EXIT_FAILURE);
}
fprintf(stderr, "%s\n", config.ToString().c_str());
if (!config.Validate()) {
fprintf(stderr, "Errors in config!\n");
return -1;
}
std::this_thread::sleep_for(std::chrono::seconds(10)); // sleep 10s
fprintf(stderr, "Creating recognizer ...\n");
const auto begin = std::chrono::steady_clock::now();
sherpa_onnx::OfflineRecognizer recognizer(config);
const auto end = std::chrono::steady_clock::now();
float elapsed_seconds =
std::chrono::duration_cast<std::chrono::milliseconds>(end - begin)
.count() /
1000.;
fprintf(stderr,
"Started nj: %d, batch_size: %d, wav_path: %s. recognizer init time: "
"%.6f\n",
nj, batch_size, wav_scp.c_str(), elapsed_seconds);
std::this_thread::sleep_for(std::chrono::seconds(10)); // sleep 10s
std::vector<std::string> wav_paths;
if (!wav_scp.empty()) {
wav_paths = LoadScpFile(wav_scp);
} else {
for (int32_t i = 1; i <= po.NumArgs(); ++i) {
wav_paths.emplace_back(po.GetArg(i));
}
}
if (wav_paths.empty()) {
fprintf(stderr, "wav files is empty.\n");
return -1;
}
std::vector<std::thread> threads;
std::vector<std::vector<std::string>> batch_wav_paths =
SplitToBatches(wav_paths, batch_size);
float total_length = 0.0f;
float total_time = 0.0f;
for (int i = 0; i < nj; i++) {
threads.emplace_back(std::thread(AsrInference, batch_wav_paths, &recognizer,
&total_length, &total_time));
}
for (auto &thread : threads) {
thread.join();
}
fprintf(stderr, "num threads: %d\n", config.model_config.num_threads);
fprintf(stderr, "decoding method: %s\n", config.decoding_method.c_str());
if (config.decoding_method == "modified_beam_search") {
fprintf(stderr, "max active paths: %d\n", config.max_active_paths);
}
fprintf(stderr, "Elapsed seconds: %.3f s\n", total_time);
float rtf = total_time / total_length;
fprintf(stderr, "Real time factor (RTF): %.6f / %.6f = %.4f\n", total_time,
total_length, rtf);
fprintf(stderr, "SPEEDUP: %.4f\n", 1.0 / rtf);
return 0;
}