speaker-diarization-onnx.py 14.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
#!/usr/bin/env python3
# Copyright    2024  Xiaomi Corp.        (authors: Fangjun Kuang)

"""
Please refer to
https://github.com/k2-fsa/sherpa-onnx/blob/master/.github/workflows/speaker-diarization.yaml
for usages.
"""

import argparse
from datetime import timedelta
from pathlib import Path
from typing import List

import librosa
import numpy as np
import onnxruntime as ort
import sherpa_onnx
import soundfile as sf
from numpy.lib.stride_tricks import as_strided


class Segment:
    def __init__(
        self,
        start,
        end,
        speaker,
    ):
        assert start < end
        self.start = start
        self.end = end
        self.speaker = speaker

    def merge(self, other, gap=0.5):
        assert self.speaker == other.speaker, (self.speaker, other.speaker)
        if self.end < other.start and self.end + gap >= other.start:
            return Segment(start=self.start, end=other.end, speaker=self.speaker)
        elif other.end < self.start and other.end + gap >= self.start:
            return Segment(start=other.start, end=self.end, speaker=self.speaker)
        else:
            return None

    @property
    def duration(self):
        return self.end - self.start

    def __str__(self):
        s = f"{timedelta(seconds=self.start)}"[:-3]
        s += " --> "
        s += f"{timedelta(seconds=self.end)}"[:-3]
        s += f" speaker_{self.speaker:02d}"
        return s


def merge_segment_list(in_out: List[Segment], min_duration_off: float):
    changed = True
    while changed:
        changed = False
        for i in range(len(in_out)):
            if i + 1 >= len(in_out):
                continue

            new_segment = in_out[i].merge(in_out[i + 1], gap=min_duration_off)
            if new_segment is None:
                continue
            del in_out[i + 1]
            in_out[i] = new_segment
            changed = True
            break


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--seg-model",
        type=str,
        required=True,
        help="Path to model.onnx for segmentation",
    )
    parser.add_argument(
        "--speaker-embedding-model",
        type=str,
        required=True,
        help="Path to model.onnx for speaker embedding extractor",
    )
    parser.add_argument("--wav", type=str, required=True, help="Path to test.wav")

    return parser.parse_args()


class OnnxSegmentationModel:
    def __init__(self, filename):
        session_opts = ort.SessionOptions()
        session_opts.inter_op_num_threads = 1
        session_opts.intra_op_num_threads = 1

        self.session_opts = session_opts

        self.model = ort.InferenceSession(
            filename,
            sess_options=self.session_opts,
            providers=["CPUExecutionProvider"],
        )

        meta = self.model.get_modelmeta().custom_metadata_map
        print(meta)

        self.window_size = int(meta["window_size"])
        self.sample_rate = int(meta["sample_rate"])
        self.window_shift = int(0.1 * self.window_size)
        self.receptive_field_size = int(meta["receptive_field_size"])
        self.receptive_field_shift = int(meta["receptive_field_shift"])
        self.num_speakers = int(meta["num_speakers"])
        self.powerset_max_classes = int(meta["powerset_max_classes"])
        self.num_classes = int(meta["num_classes"])

    def __call__(self, x):
        """
        Args:
          x: (N, num_samples)
        Returns:
          A tensor of shape (N, num_frames, num_classes)
        """
        x = np.expand_dims(x, axis=1)

        (y,) = self.model.run(
            [self.model.get_outputs()[0].name], {self.model.get_inputs()[0].name: x}
        )

        return y


def load_wav(filename, expected_sample_rate) -> np.ndarray:
    audio, sample_rate = sf.read(filename, dtype="float32", always_2d=True)
    audio = audio[:, 0]  # only use the first channel
    if sample_rate != expected_sample_rate:
        audio = librosa.resample(
            audio,
            orig_sr=sample_rate,
            target_sr=expected_sample_rate,
        )
    return audio


def get_powerset_mapping(num_classes, num_speakers, powerset_max_classes):
    mapping = np.zeros((num_classes, num_speakers))

    k = 1
    for i in range(1, powerset_max_classes + 1):
        if i == 1:
            for j in range(0, num_speakers):
                mapping[k, j] = 1
                k += 1
        elif i == 2:
            for j in range(0, num_speakers):
                for m in range(j + 1, num_speakers):
                    mapping[k, j] = 1
                    mapping[k, m] = 1
                    k += 1
        elif i == 3:
            raise RuntimeError("Unsupported")

    return mapping


def to_multi_label(y, mapping):
    """
    Args:
      y: (num_chunks, num_frames, num_classes)
    Returns:
      A tensor of shape (num_chunks, num_frames, num_speakers)
    """
    y = np.argmax(y, axis=-1)
    labels = mapping[y.reshape(-1)].reshape(y.shape[0], y.shape[1], -1)
    return labels


# speaker count per frame
def speaker_count(labels, seg_m):
    """
    Args:
      labels: (num_chunks, num_frames, num_speakers)
      seg_m: Segmentation model
    Returns:
      A integer array of shape (num_total_frames,)
    """
    labels = labels.sum(axis=-1)
    # Now labels: (num_chunks, num_frames)

    num_frames = (
        int(
            (seg_m.window_size + (labels.shape[0] - 1) * seg_m.window_shift)
            / seg_m.receptive_field_shift
        )
        + 1
    )
    ans = np.zeros((num_frames,))
    count = np.zeros((num_frames,))

    for i in range(labels.shape[0]):
        this_chunk = labels[i]
        start = int(i * seg_m.window_shift / seg_m.receptive_field_shift + 0.5)
        end = start + this_chunk.shape[0]
        ans[start:end] += this_chunk
        count[start:end] += 1

    ans /= np.maximum(count, 1e-12)

    return (ans + 0.5).astype(np.int8)


def load_speaker_embedding_model(filename):
    config = sherpa_onnx.SpeakerEmbeddingExtractorConfig(
        model=filename,
        num_threads=1,
        debug=0,
    )
    if not config.validate():
        raise ValueError(f"Invalid config. {config}")
    extractor = sherpa_onnx.SpeakerEmbeddingExtractor(config)
    return extractor


def get_embeddings(embedding_filename, audio, labels, seg_m, exclude_overlap):
    """
    Args:
      embedding_filename: Path to the speaker embedding extractor model
      audio: (num_samples,)
      labels: (num_chunks, num_frames, num_speakers)
      seg_m: segmentation model
    Returns:
      Return (num_chunks, num_speakers, embedding_dim)
    """
    if exclude_overlap:
        labels = labels * (labels.sum(axis=-1, keepdims=True) < 2)

    extractor = load_speaker_embedding_model(embedding_filename)
    buffer = np.empty(seg_m.window_size)
    num_chunks, num_frames, num_speakers = labels.shape

    ans_chunk_speaker_pair = []
    ans_embeddings = []

    for i in range(num_chunks):
        labels_T = labels[i].T
        # t: (num_speakers, num_frames)

        sample_offset = i * seg_m.window_shift

        for j in range(num_speakers):
            frames = labels_T[j]
            if frames.sum() < 10:
                # skip segment less than 20 frames, i.e., about 0.2 seconds
                continue

            start = None
            start_samples = 0
            idx = 0
            for k in range(num_frames):
                if frames[k] != 0:
                    if start is None:
                        start = k
                elif start is not None:
                    start_samples = (
                        int(start / num_frames * seg_m.window_size) + sample_offset
                    )
                    end_samples = (
                        int(k / num_frames * seg_m.window_size) + sample_offset
                    )
                    num_samples = end_samples - start_samples
                    buffer[idx : idx + num_samples] = audio[start_samples:end_samples]
                    idx += num_samples

                    start = None
            if start is not None:
                start_samples = (
                    int(start / num_frames * seg_m.window_size) + sample_offset
                )
                end_samples = int(k / num_frames * seg_m.window_size) + sample_offset
                num_samples = end_samples - start_samples
                buffer[idx : idx + num_samples] = audio[start_samples:end_samples]
                idx += num_samples

            stream = extractor.create_stream()
            stream.accept_waveform(sample_rate=seg_m.sample_rate, waveform=buffer[:idx])
            stream.input_finished()

            assert extractor.is_ready(stream)
            embedding = extractor.compute(stream)
            embedding = np.array(embedding)

            ans_chunk_speaker_pair.append([i, j])
            ans_embeddings.append(embedding)

    assert len(ans_chunk_speaker_pair) == len(ans_embeddings), (
        len(ans_chunk_speaker_pair),
        len(ans_embeddings),
    )
    return ans_chunk_speaker_pair, np.array(ans_embeddings)


def main():
    args = get_args()
    assert Path(args.seg_model).is_file(), args.seg_model
    assert Path(args.wav).is_file(), args.wav

    seg_m = OnnxSegmentationModel(args.seg_model)
    audio = load_wav(args.wav, seg_m.sample_rate)
    # audio: (num_samples,)

    num = (audio.shape[0] - seg_m.window_size) // seg_m.window_shift + 1

    samples = as_strided(
        audio,
        shape=(num, seg_m.window_size),
        strides=(seg_m.window_shift * audio.strides[0], audio.strides[0]),
    )

    # or use torch.Tensor.unfold
    #  samples = torch.from_numpy(audio).unfold(0, seg_m.window_size, seg_m.window_shift).numpy()

    if (
        audio.shape[0] < seg_m.window_size
        or (audio.shape[0] - seg_m.window_size) % seg_m.window_shift > 0
    ):
        has_last_chunk = True
    else:
        has_last_chunk = False

    num_chunks = samples.shape[0]
    batch_size = 32
    output = []
    for i in range(0, num_chunks, batch_size):
        start = i
        end = i + batch_size
        # it's perfectly ok to use end > num_chunks
        y = seg_m(samples[start:end])
        output.append(y)

    if has_last_chunk:
        last_chunk = audio[num_chunks * seg_m.window_shift :]  # noqa
        pad_size = seg_m.window_size - last_chunk.shape[0]
        last_chunk = np.pad(last_chunk, (0, pad_size))
        last_chunk = np.expand_dims(last_chunk, axis=0)
        y = seg_m(last_chunk)
        output.append(y)

    y = np.vstack(output)
    # y: (num_chunks, num_frames, num_classes)

    mapping = get_powerset_mapping(
        num_classes=seg_m.num_classes,
        num_speakers=seg_m.num_speakers,
        powerset_max_classes=seg_m.powerset_max_classes,
    )
    labels = to_multi_label(y, mapping=mapping)
    # labels: (num_chunks, num_frames, num_speakers)

    inactive = (labels.sum(axis=1) == 0).astype(np.int8)
    # inactive: (num_chunks, num_speakers)

    speakers_per_frame = speaker_count(labels=labels, seg_m=seg_m)
    # speakers_per_frame: (num_frames, speakers_per_frame)

    if speakers_per_frame.max() == 0:
        print("No speakers found in the audio file!")
        return

    # if users specify only 1 speaker for clustering, then return the
    # result directly

    # Now, get embeddings
    chunk_speaker_pair, embeddings = get_embeddings(
        args.speaker_embedding_model,
        audio=audio,
        labels=labels,
        seg_m=seg_m,
        #  exclude_overlap=True,
        exclude_overlap=False,
    )
    # chunk_speaker_pair: a list of (chunk_idx, speaker_idx)
    # embeddings: (batch_size, embedding_dim)

    # Please change num_clusters or threshold by yourself.
    clustering_config = sherpa_onnx.FastClusteringConfig(num_clusters=2)
    #  clustering_config = sherpa_onnx.FastClusteringConfig(threshold=0.8)
    clustering = sherpa_onnx.FastClustering(clustering_config)
    cluster_labels = clustering(embeddings)

    chunk_speaker_to_cluster = dict()
    for (chunk_idx, speaker_idx), cluster_idx in zip(
        chunk_speaker_pair, cluster_labels
    ):
        if inactive[chunk_idx, speaker_idx] == 1:
            print("skip ", chunk_idx, speaker_idx)
            continue
        chunk_speaker_to_cluster[(chunk_idx, speaker_idx)] = cluster_idx

    num_speakers = max(cluster_labels) + 1
    relabels = np.zeros((labels.shape[0], labels.shape[1], num_speakers))
    for i in range(labels.shape[0]):
        for j in range(labels.shape[1]):
            for k in range(labels.shape[2]):
                if (i, k) not in chunk_speaker_to_cluster:
                    continue
                t = chunk_speaker_to_cluster[(i, k)]

                if labels[i, j, k] == 1:
                    relabels[i, j, t] = 1

    num_frames = (
        int(
            (seg_m.window_size + (relabels.shape[0] - 1) * seg_m.window_shift)
            / seg_m.receptive_field_shift
        )
        + 1
    )

    count = np.zeros((num_frames, relabels.shape[-1]))
    for i in range(relabels.shape[0]):
        this_chunk = relabels[i]
        start = int(i * seg_m.window_shift / seg_m.receptive_field_shift + 0.5)
        end = start + this_chunk.shape[0]
        count[start:end] += this_chunk

    if has_last_chunk:
        stop_frame = int(audio.shape[0] / seg_m.receptive_field_shift)
        count = count[:stop_frame]

    sorted_count = np.argsort(-count, axis=-1)
    final = np.zeros((count.shape[0], count.shape[1]))

    for i, (c, sc) in enumerate(zip(speakers_per_frame, sorted_count)):
        for k in range(c):
            final[i, sc[k]] = 1

    min_duration_off = 0.5
    min_duration_on = 0.3
    onset = 0.5
    offset = 0.5
    # final: (num_frames, num_speakers)

    final = final.T
    for kk in range(final.shape[0]):
        segment_list = []
        frames = final[kk]

        is_active = frames[0] > onset

        start = None
        if is_active:
            start = 0
        scale = seg_m.receptive_field_shift / seg_m.sample_rate
        scale_offset = seg_m.receptive_field_size / seg_m.sample_rate * 0.5
        for i in range(1, len(frames)):
            if is_active:
                if frames[i] < offset:
                    segment = Segment(
                        start=start * scale + scale_offset,
                        end=i * scale + scale_offset,
                        speaker=kk,
                    )
                    segment_list.append(segment)
                    is_active = False
            else:
                if frames[i] > onset:
                    start = i
                    is_active = True

        if is_active:
            segment = Segment(
                start=start * scale + scale_offset,
                end=(len(frames) - 1) * scale + scale_offset,
                speaker=kk,
            )
            segment_list.append(segment)

        if len(segment_list) > 1:
            merge_segment_list(segment_list, min_duration_off=min_duration_off)
            for s in segment_list:
                if s.duration < min_duration_on:
                    continue
                print(s)


if __name__ == "__main__":
    main()