offline-stream.cc
9.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// sherpa-onnx/csrc/offline-stream.cc
//
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/offline-stream.h"
#include <assert.h>
#include <algorithm>
#include <cmath>
#include <iomanip>
#include "kaldi-native-fbank/csrc/online-feature.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/offline-recognizer.h"
#include "sherpa-onnx/csrc/resample.h"
namespace sherpa_onnx {
/* Compute mean and inverse stddev over rows.
*
* @param p A pointer to a 2-d array of shape (num_rows, num_cols)
* @param num_rows Number of rows
* @param num_cols Number of columns
* @param mean On return, it contains p.mean(axis=0)
* @param inv_stddev On return, it contains 1/p.std(axis=0)
*/
static void ComputeMeanAndInvStd(const float *p, int32_t num_rows,
int32_t num_cols, std::vector<float> *mean,
std::vector<float> *inv_stddev) {
std::vector<float> sum(num_cols);
std::vector<float> sum_sq(num_cols);
for (int32_t i = 0; i != num_rows; ++i) {
for (int32_t c = 0; c != num_cols; ++c) {
auto t = p[c];
sum[c] += t;
sum_sq[c] += t * t;
}
p += num_cols;
}
mean->resize(num_cols);
inv_stddev->resize(num_cols);
for (int32_t i = 0; i != num_cols; ++i) {
auto t = sum[i] / num_rows;
(*mean)[i] = t;
float stddev = std::sqrt(sum_sq[i] / num_rows - t * t);
(*inv_stddev)[i] = 1.0f / (stddev + 1e-5f);
}
}
void OfflineFeatureExtractorConfig::Register(ParseOptions *po) {
po->Register("sample-rate", &sampling_rate,
"Sampling rate of the input waveform. "
"Note: You can have a different "
"sample rate for the input waveform. We will do resampling "
"inside the feature extractor");
po->Register("feat-dim", &feature_dim,
"Feature dimension. Must match the one expected by the model.");
}
std::string OfflineFeatureExtractorConfig::ToString() const {
std::ostringstream os;
os << "OfflineFeatureExtractorConfig(";
os << "sampling_rate=" << sampling_rate << ", ";
os << "feature_dim=" << feature_dim << ")";
return os.str();
}
class OfflineStream::Impl {
public:
explicit Impl(const OfflineFeatureExtractorConfig &config,
ContextGraphPtr context_graph)
: config_(config), context_graph_(context_graph) {
opts_.frame_opts.dither = 0;
opts_.frame_opts.snip_edges = false;
opts_.frame_opts.samp_freq = config.sampling_rate;
opts_.mel_opts.num_bins = config.feature_dim;
// Please see
// https://github.com/lhotse-speech/lhotse/blob/master/lhotse/features/fbank.py#L27
// and
// https://github.com/k2-fsa/sherpa-onnx/issues/514
opts_.mel_opts.high_freq = -400;
fbank_ = std::make_unique<knf::OnlineFbank>(opts_);
}
explicit Impl(WhisperTag /*tag*/) {
config_.normalize_samples = true;
opts_.frame_opts.samp_freq = 16000;
opts_.mel_opts.num_bins = 80; // not used
whisper_fbank_ =
std::make_unique<knf::OnlineWhisperFbank>(opts_.frame_opts);
}
explicit Impl(CEDTag /*tag*/) {
// see
// https://github.com/RicherMans/CED/blob/main/onnx_inference_with_kaldi.py
opts_.frame_opts.frame_length_ms = 32;
opts_.frame_opts.dither = 0;
opts_.frame_opts.preemph_coeff = 0;
opts_.frame_opts.remove_dc_offset = false;
opts_.frame_opts.window_type = "hann";
opts_.frame_opts.snip_edges = false;
opts_.frame_opts.samp_freq = 16000; // fixed to 16000
opts_.mel_opts.num_bins = 64;
opts_.mel_opts.high_freq = 8000;
fbank_ = std::make_unique<knf::OnlineFbank>(opts_);
}
void AcceptWaveform(int32_t sampling_rate, const float *waveform, int32_t n) {
if (config_.normalize_samples) {
AcceptWaveformImpl(sampling_rate, waveform, n);
} else {
std::vector<float> buf(n);
for (int32_t i = 0; i != n; ++i) {
buf[i] = waveform[i] * 32768;
}
AcceptWaveformImpl(sampling_rate, buf.data(), n);
}
}
void AcceptWaveformImpl(int32_t sampling_rate, const float *waveform,
int32_t n) {
if (sampling_rate != opts_.frame_opts.samp_freq) {
SHERPA_ONNX_LOGE(
"Creating a resampler:\n"
" in_sample_rate: %d\n"
" output_sample_rate: %d\n",
sampling_rate, static_cast<int32_t>(opts_.frame_opts.samp_freq));
float min_freq =
std::min<int32_t>(sampling_rate, opts_.frame_opts.samp_freq);
float lowpass_cutoff = 0.99 * 0.5 * min_freq;
int32_t lowpass_filter_width = 6;
auto resampler = std::make_unique<LinearResample>(
sampling_rate, opts_.frame_opts.samp_freq, lowpass_cutoff,
lowpass_filter_width);
std::vector<float> samples;
resampler->Resample(waveform, n, true, &samples);
if (fbank_) {
fbank_->AcceptWaveform(opts_.frame_opts.samp_freq, samples.data(),
samples.size());
fbank_->InputFinished();
} else {
whisper_fbank_->AcceptWaveform(opts_.frame_opts.samp_freq,
samples.data(), samples.size());
whisper_fbank_->InputFinished();
}
return;
} // if (sampling_rate != opts_.frame_opts.samp_freq)
if (fbank_) {
fbank_->AcceptWaveform(sampling_rate, waveform, n);
fbank_->InputFinished();
} else {
whisper_fbank_->AcceptWaveform(sampling_rate, waveform, n);
whisper_fbank_->InputFinished();
}
}
int32_t FeatureDim() const { return opts_.mel_opts.num_bins; }
std::vector<float> GetFrames() const {
int32_t n =
fbank_ ? fbank_->NumFramesReady() : whisper_fbank_->NumFramesReady();
assert(n > 0 && "Please first call AcceptWaveform()");
int32_t feature_dim = FeatureDim();
std::vector<float> features(n * feature_dim);
float *p = features.data();
for (int32_t i = 0; i != n; ++i) {
const float *f =
fbank_ ? fbank_->GetFrame(i) : whisper_fbank_->GetFrame(i);
std::copy(f, f + feature_dim, p);
p += feature_dim;
}
NemoNormalizeFeatures(features.data(), n, feature_dim);
return features;
}
void SetResult(const OfflineRecognitionResult &r) { r_ = r; }
const OfflineRecognitionResult &GetResult() const { return r_; }
const ContextGraphPtr &GetContextGraph() const { return context_graph_; }
private:
void NemoNormalizeFeatures(float *p, int32_t num_frames,
int32_t feature_dim) const {
if (config_.nemo_normalize_type.empty()) {
return;
}
if (config_.nemo_normalize_type != "per_feature") {
SHERPA_ONNX_LOGE(
"Only normalize_type=per_feature is implemented. Given: %s",
config_.nemo_normalize_type.c_str());
exit(-1);
}
NemoNormalizePerFeature(p, num_frames, feature_dim);
}
static void NemoNormalizePerFeature(float *p, int32_t num_frames,
int32_t feature_dim) {
std::vector<float> mean;
std::vector<float> inv_stddev;
ComputeMeanAndInvStd(p, num_frames, feature_dim, &mean, &inv_stddev);
for (int32_t n = 0; n != num_frames; ++n) {
for (int32_t i = 0; i != feature_dim; ++i) {
p[i] = (p[i] - mean[i]) * inv_stddev[i];
}
p += feature_dim;
}
}
private:
OfflineFeatureExtractorConfig config_;
std::unique_ptr<knf::OnlineFbank> fbank_;
std::unique_ptr<knf::OnlineWhisperFbank> whisper_fbank_;
knf::FbankOptions opts_;
OfflineRecognitionResult r_;
ContextGraphPtr context_graph_;
};
OfflineStream::OfflineStream(
const OfflineFeatureExtractorConfig &config /*= {}*/,
ContextGraphPtr context_graph /*= nullptr*/)
: impl_(std::make_unique<Impl>(config, context_graph)) {}
OfflineStream::OfflineStream(WhisperTag tag)
: impl_(std::make_unique<Impl>(tag)) {}
OfflineStream::OfflineStream(CEDTag tag) : impl_(std::make_unique<Impl>(tag)) {}
OfflineStream::~OfflineStream() = default;
void OfflineStream::AcceptWaveform(int32_t sampling_rate, const float *waveform,
int32_t n) const {
impl_->AcceptWaveform(sampling_rate, waveform, n);
}
int32_t OfflineStream::FeatureDim() const { return impl_->FeatureDim(); }
std::vector<float> OfflineStream::GetFrames() const {
return impl_->GetFrames();
}
void OfflineStream::SetResult(const OfflineRecognitionResult &r) {
impl_->SetResult(r);
}
const ContextGraphPtr &OfflineStream::GetContextGraph() const {
return impl_->GetContextGraph();
}
const OfflineRecognitionResult &OfflineStream::GetResult() const {
return impl_->GetResult();
}
std::string OfflineRecognitionResult::AsJsonString() const {
std::ostringstream os;
os << "{";
os << "\"text\""
<< ": ";
os << "\"" << text << "\""
<< ", ";
os << "\""
<< "timestamps"
<< "\""
<< ": ";
os << "[";
std::string sep = "";
for (auto t : timestamps) {
os << sep << std::fixed << std::setprecision(2) << t;
sep = ", ";
}
os << "], ";
os << "\""
<< "tokens"
<< "\""
<< ":";
os << "[";
sep = "";
auto oldFlags = os.flags();
for (const auto &t : tokens) {
if (t.size() == 1 && static_cast<uint8_t>(t[0]) > 0x7f) {
const uint8_t *p = reinterpret_cast<const uint8_t *>(t.c_str());
os << sep << "\""
<< "<0x" << std::hex << std::uppercase << static_cast<uint32_t>(p[0])
<< ">"
<< "\"";
os.flags(oldFlags);
} else {
os << sep << "\"" << t << "\"";
}
sep = ", ";
}
os << "]";
os << "}";
return os.str();
}
} // namespace sherpa_onnx