Main.kt
1.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
package com.k2fsa.sherpa.onnx
import android.content.res.AssetManager
fun main() {
var featConfig = FeatureConfig(
sampleRate = 16000,
featureDim = 80,
)
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
// to dowload pre-trained models
var modelConfig = OnlineTransducerModelConfig(
encoder = "./sherpa-onnx-streaming-zipformer-en-2023-02-21/encoder-epoch-99-avg-1.onnx",
decoder = "./sherpa-onnx-streaming-zipformer-en-2023-02-21/decoder-epoch-99-avg-1.onnx",
joiner = "./sherpa-onnx-streaming-zipformer-en-2023-02-21/joiner-epoch-99-avg-1.onnx",
tokens = "./sherpa-onnx-streaming-zipformer-en-2023-02-21/tokens.txt",
numThreads = 1,
debug = false,
)
var endpointConfig = EndpointConfig()
var lmConfig = OnlineLMConfig()
var config = OnlineRecognizerConfig(
modelConfig = modelConfig,
lmConfig = lmConfig,
featConfig = featConfig,
endpointConfig = endpointConfig,
enableEndpoint = true,
decodingMethod = "greedy_search",
maxActivePaths = 4,
)
var model = SherpaOnnx(
config = config,
)
var objArray = WaveReader.readWaveFromFile(
filename = "./sherpa-onnx-streaming-zipformer-en-2023-02-21/test_wavs/0.wav",
)
var samples : FloatArray = objArray[0] as FloatArray
var sampleRate : Int = objArray[1] as Int
model.acceptWaveform(samples, sampleRate=sampleRate)
while (model.isReady()) {
model.decode()
}
var tailPaddings = FloatArray((sampleRate * 0.5).toInt()) // 0.5 seconds
model.acceptWaveform(tailPaddings, sampleRate=sampleRate)
model.inputFinished()
while (model.isReady()) {
model.decode()
}
println("results: ${model.text}")
}