offline-tts-vits-impl.h
4.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
// sherpa-onnx/csrc/offline-tts-vits-impl.h
//
// Copyright (c) 2023 Xiaomi Corporation
#ifndef SHERPA_ONNX_CSRC_OFFLINE_TTS_VITS_IMPL_H_
#define SHERPA_ONNX_CSRC_OFFLINE_TTS_VITS_IMPL_H_
#include <memory>
#include <string>
#include <utility>
#include <vector>
#if __ANDROID_API__ >= 9
#include <strstream>
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif
#include "kaldifst/csrc/text-normalizer.h"
#include "sherpa-onnx/csrc/lexicon.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/offline-tts-impl.h"
#include "sherpa-onnx/csrc/offline-tts-vits-model.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/text-utils.h"
namespace sherpa_onnx {
class OfflineTtsVitsImpl : public OfflineTtsImpl {
public:
explicit OfflineTtsVitsImpl(const OfflineTtsConfig &config)
: config_(config),
model_(std::make_unique<OfflineTtsVitsModel>(config.model)),
lexicon_(config.model.vits.lexicon, config.model.vits.tokens,
model_->Punctuations(), model_->Language(), config.model.debug,
model_->IsPiper()) {
if (!config.rule_fsts.empty()) {
std::vector<std::string> files;
SplitStringToVector(config.rule_fsts, ",", false, &files);
tn_list_.reserve(files.size());
for (const auto &f : files) {
if (config.model.debug) {
SHERPA_ONNX_LOGE("rule fst: %s", f.c_str());
}
tn_list_.push_back(std::make_unique<kaldifst::TextNormalizer>(f));
}
}
}
#if __ANDROID_API__ >= 9
OfflineTtsVitsImpl(AAssetManager *mgr, const OfflineTtsConfig &config)
: config_(config),
model_(std::make_unique<OfflineTtsVitsModel>(mgr, config.model)),
lexicon_(mgr, config.model.vits.lexicon, config.model.vits.tokens,
model_->Punctuations(), model_->Language(), config.model.debug,
model_->IsPiper()) {
if (!config.rule_fsts.empty()) {
std::vector<std::string> files;
SplitStringToVector(config.rule_fsts, ",", false, &files);
tn_list_.reserve(files.size());
for (const auto &f : files) {
if (config.model.debug) {
SHERPA_ONNX_LOGE("rule fst: %s", f.c_str());
}
auto buf = ReadFile(mgr, f);
std::istrstream is(buf.data(), buf.size());
tn_list_.push_back(std::make_unique<kaldifst::TextNormalizer>(is));
}
}
}
#endif
GeneratedAudio Generate(const std::string &_text, int64_t sid = 0,
float speed = 1.0) const override {
int32_t num_speakers = model_->NumSpeakers();
if (num_speakers == 0 && sid != 0) {
SHERPA_ONNX_LOGE(
"This is a single-speaker model and supports only sid 0. Given sid: "
"%d. sid is ignored",
static_cast<int32_t>(sid));
}
if (num_speakers != 0 && (sid >= num_speakers || sid < 0)) {
SHERPA_ONNX_LOGE(
"This model contains only %d speakers. sid should be in the range "
"[%d, %d]. Given: %d. Use sid=0",
num_speakers, 0, num_speakers - 1, static_cast<int32_t>(sid));
sid = 0;
}
std::string text = _text;
if (config_.model.debug) {
SHERPA_ONNX_LOGE("Raw text: %s", text.c_str());
}
if (!tn_list_.empty()) {
for (const auto &tn : tn_list_) {
text = tn->Normalize(text);
if (config_.model.debug) {
SHERPA_ONNX_LOGE("After normalizing: %s", text.c_str());
}
}
}
std::vector<int64_t> x = lexicon_.ConvertTextToTokenIds(text);
if (x.empty()) {
SHERPA_ONNX_LOGE("Failed to convert %s to token IDs", text.c_str());
return {};
}
if (model_->AddBlank()) {
std::vector<int64_t> buffer(x.size() * 2 + 1);
int32_t i = 1;
for (auto k : x) {
buffer[i] = k;
i += 2;
}
x = std::move(buffer);
}
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 2> x_shape = {1, static_cast<int32_t>(x.size())};
Ort::Value x_tensor = Ort::Value::CreateTensor(
memory_info, x.data(), x.size(), x_shape.data(), x_shape.size());
Ort::Value audio = model_->Run(std::move(x_tensor), sid, speed);
std::vector<int64_t> audio_shape =
audio.GetTensorTypeAndShapeInfo().GetShape();
int64_t total = 1;
// The output shape may be (1, 1, total) or (1, total) or (total,)
for (auto i : audio_shape) {
total *= i;
}
const float *p = audio.GetTensorData<float>();
GeneratedAudio ans;
ans.sample_rate = model_->SampleRate();
ans.samples = std::vector<float>(p, p + total);
return ans;
}
private:
OfflineTtsConfig config_;
std::unique_ptr<OfflineTtsVitsModel> model_;
std::vector<std::unique_ptr<kaldifst::TextNormalizer>> tn_list_;
Lexicon lexicon_;
};
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_OFFLINE_TTS_VITS_IMPL_H_