offline-dolphin-ctc-decode-files.py
1.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/env python3
"""
This file shows how to use a non-streaming CTC model from Dolphin
to decode files.
Please download model files from
https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
"""
from pathlib import Path
import time
import sherpa_onnx
import soundfile as sf
def create_recognizer():
model = "./sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02/model.int8.onnx"
tokens = "./sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02/tokens.txt"
test_wav = (
"./sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02/test_wavs/0.wav"
)
if not Path(model).is_file() or not Path(test_wav).is_file():
raise ValueError(
"""Please download model files from
https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
"""
)
return (
sherpa_onnx.OfflineRecognizer.from_dolphin_ctc(
model=model,
tokens=tokens,
debug=True,
),
test_wav,
)
def main():
recognizer, wave_filename = create_recognizer()
audio, sample_rate = sf.read(wave_filename, dtype="float32", always_2d=True)
audio = audio[:, 0] # only use the first channel
# audio is a 1-D float32 numpy array normalized to the range [-1, 1]
# sample_rate does not need to be 16000 Hz
start = time.time()
stream = recognizer.create_stream()
stream.accept_waveform(sample_rate, audio)
recognizer.decode_stream(stream)
end = time.time()
print(wave_filename)
print(stream.result)
elapsed_seconds = end - start
audio_duration = len(audio) / sample_rate
real_time_factor = elapsed_seconds / audio_duration
print(f"Elapsed seconds: {elapsed_seconds:.3f}")
print(f"Audio duration in seconds: {audio_duration:.3f}")
print(f"RTF: {elapsed_seconds:.3f}/{audio_duration:.3f} = {real_time_factor:.3f}")
if __name__ == "__main__":
main()