non_streaming_server.py 25.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
#!/usr/bin/env python3
# Copyright      2022-2023  Xiaomi Corp.
"""
A server for non-streaming speech recognition. Non-streaming means you send all
the content of the audio at once for recognition.

It supports multiple clients sending at the same time.

Usage:
    ./non_streaming_server.py --help

Please refer to

https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-transducer/index.html
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-paraformer/index.html
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-ctc/index.html
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/whisper/index.html

for pre-trained models to download.

Usage examples:

(1) Use a non-streaming transducer model

cd /path/to/sherpa-onnx
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/csukuangfj/sherpa-onnx-zipformer-en-2023-06-26
cd sherpa-onnx-zipformer-en-2023-06-26
git lfs pull --include "*.onnx"
cd ..

python3 ./python-api-examples/non_streaming_server.py \
  --encoder ./sherpa-onnx-zipformer-en-2023-06-26/encoder-epoch-99-avg-1.onnx \
  --decoder ./sherpa-onnx-zipformer-en-2023-06-26/decoder-epoch-99-avg-1.onnx \
  --joiner ./sherpa-onnx-zipformer-en-2023-06-26/joiner-epoch-99-avg-1.onnx \
  --tokens ./sherpa-onnx-zipformer-en-2023-06-26/tokens.txt

(2) Use a non-streaming paraformer

cd /path/to/sherpa-onnx
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28
cd sherpa-onnx-paraformer-zh-2023-03-28
git lfs pull --include "*.onnx"
cd ..

python3 ./python-api-examples/non_streaming_server.py \
  --paraformer ./sherpa-onnx-paraformer-zh-2023-03-28/model.int8.onnx \
  --tokens ./sherpa-onnx-paraformer-zh-2023-03-28/tokens.txt

(3) Use a non-streaming CTC model from NeMo

cd /path/to/sherpa-onnx
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/csukuangfj/sherpa-onnx-nemo-ctc-en-conformer-medium
cd sherpa-onnx-nemo-ctc-en-conformer-medium
git lfs pull --include "*.onnx"
cd ..

python3 ./python-api-examples/non_streaming_server.py \
  --nemo-ctc ./sherpa-onnx-nemo-ctc-en-conformer-medium/model.onnx \
  --tokens ./sherpa-onnx-nemo-ctc-en-conformer-medium/tokens.txt

(4) Use a Whisper model

cd /path/to/sherpa-onnx
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/csukuangfj/sherpa-onnx-whisper-tiny.en
cd sherpa-onnx-whisper-tiny.en
git lfs pull --include "*.onnx"
cd ..

python3 ./python-api-examples/non_streaming_server.py \
  --whisper-encoder=./sherpa-onnx-whisper-tiny.en/tiny.en-encoder.onnx \
  --whisper-decoder=./sherpa-onnx-whisper-tiny.en/tiny.en-decoder.onnx \
  --tokens=./sherpa-onnx-whisper-tiny.en/tiny.en-tokens.txt

----

To use a certificate so that you can use https, please use

python3 ./python-api-examples/non_streaming_server.py \
  --whisper-encoder=./sherpa-onnx-whisper-tiny.en/tiny.en-encoder.onnx \
  --whisper-decoder=./sherpa-onnx-whisper-tiny.en/tiny.en-decoder.onnx \
  --certificate=/path/to/your/cert.pem

If you don't have a certificate, please run:

    cd ./python-api-examples/web
    ./generate-certificate.py

It will generate 3 files, one of which is the required `cert.pem`.
"""  # noqa

import argparse
import asyncio
import http
import logging
import socket
import ssl
import sys
import warnings
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from pathlib import Path
from typing import Optional, Tuple

import numpy as np
import sherpa_onnx

import websockets

from http_server import HttpServer


def setup_logger(
    log_filename: str,
    log_level: str = "info",
    use_console: bool = True,
) -> None:
    """Setup log level.

    Args:
      log_filename:
        The filename to save the log.
      log_level:
        The log level to use, e.g., "debug", "info", "warning", "error",
        "critical"
      use_console:
        True to also print logs to console.
    """
    now = datetime.now()
    date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
    log_filename = f"{log_filename}-{date_time}.txt"

    Path(log_filename).parent.mkdir(parents=True, exist_ok=True)

    level = logging.ERROR
    if log_level == "debug":
        level = logging.DEBUG
    elif log_level == "info":
        level = logging.INFO
    elif log_level == "warning":
        level = logging.WARNING
    elif log_level == "critical":
        level = logging.CRITICAL

    logging.basicConfig(
        filename=log_filename,
        format=formatter,
        level=level,
        filemode="w",
    )
    if use_console:
        console = logging.StreamHandler()
        console.setLevel(level)
        console.setFormatter(logging.Formatter(formatter))
        logging.getLogger("").addHandler(console)


def add_transducer_model_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--encoder",
        default="",
        type=str,
        help="Path to the transducer encoder model",
    )

    parser.add_argument(
        "--decoder",
        default="",
        type=str,
        help="Path to the transducer decoder model",
    )

    parser.add_argument(
        "--joiner",
        default="",
        type=str,
        help="Path to the transducer joiner model",
    )


def add_paraformer_model_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--paraformer",
        default="",
        type=str,
        help="Path to the model.onnx from Paraformer",
    )


def add_nemo_ctc_model_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--nemo-ctc",
        default="",
        type=str,
        help="Path to the model.onnx from NeMo CTC",
    )


def add_whisper_model_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--whisper-encoder",
        default="",
        type=str,
        help="Path to whisper encoder model",
    )

    parser.add_argument(
        "--whisper-decoder",
        default="",
        type=str,
        help="Path to whisper decoder model",
    )


def add_model_args(parser: argparse.ArgumentParser):
    add_transducer_model_args(parser)
    add_paraformer_model_args(parser)
    add_nemo_ctc_model_args(parser)
    add_whisper_model_args(parser)

    parser.add_argument(
        "--tokens",
        type=str,
        help="Path to tokens.txt",
    )

    parser.add_argument(
        "--num-threads",
        type=int,
        default=2,
        help="Number of threads to run the neural network model",
    )

    parser.add_argument(
        "--provider",
        type=str,
        default="cpu",
        help="Valid values: cpu, cuda, coreml",
    )


def add_feature_config_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--sample-rate",
        type=int,
        default=16000,
        help="Sample rate of the data used to train the model. ",
    )

    parser.add_argument(
        "--feat-dim",
        type=int,
        default=80,
        help="Feature dimension of the model",
    )


def add_decoding_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--decoding-method",
        type=str,
        default="greedy_search",
        help="""Decoding method to use. Current supported methods are:
        - greedy_search
        - modified_beam_search  (for transducer models only)
        """,
    )

    add_modified_beam_search_args(parser)


def add_modified_beam_search_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--max-active-paths",
        type=int,
        default=4,
        help="""Used only when --decoding-method is modified_beam_search.
        It specifies number of active paths to keep during decoding.
        """,
    )


def check_args(args):
    if not Path(args.tokens).is_file():
        raise ValueError(f"{args.tokens} does not exist")

    if args.decoding_method not in (
        "greedy_search",
        "modified_beam_search",
    ):
        raise ValueError(f"Unsupported decoding method {args.decoding_method}")

    if args.decoding_method == "modified_beam_search":
        assert args.num_active_paths > 0, args.num_active_paths
        assert Path(args.encoder).is_file(), args.encoder
        assert Path(args.decoder).is_file(), args.decoder
        assert Path(args.joiner).is_file(), args.joiner


def get_args():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )

    add_model_args(parser)
    add_feature_config_args(parser)
    add_decoding_args(parser)

    parser.add_argument(
        "--port",
        type=int,
        default=6006,
        help="The server will listen on this port",
    )

    parser.add_argument(
        "--max-batch-size",
        type=int,
        default=25,
        help="""Max batch size for computation. Note if there are not enough
        requests in the queue, it will wait for max_wait_ms time. After that,
        even if there are not enough requests, it still sends the
        available requests in the queue for computation.
        """,
    )

    parser.add_argument(
        "--max-wait-ms",
        type=float,
        default=5,
        help="""Max time in millisecond to wait to build batches for inference.
        If there are not enough requests in the feature queue to build a batch
        of max_batch_size, it waits up to this time before fetching available
        requests for computation.
        """,
    )

    parser.add_argument(
        "--nn-pool-size",
        type=int,
        default=1,
        help="Number of threads for NN computation and decoding.",
    )

    parser.add_argument(
        "--max-message-size",
        type=int,
        default=(1 << 20),
        help="""Max message size in bytes.
        The max size per message cannot exceed this limit.
        """,
    )

    parser.add_argument(
        "--max-queue-size",
        type=int,
        default=32,
        help="Max number of messages in the queue for each connection.",
    )

    parser.add_argument(
        "--max-active-connections",
        type=int,
        default=500,
        help="""Maximum number of active connections. The server will refuse
        to accept new connections once the current number of active connections
        equals to this limit.
        """,
    )

    parser.add_argument(
        "--certificate",
        type=str,
        help="""Path to the X.509 certificate. You need it only if you want to
        use a secure websocket connection, i.e., use wss:// instead of ws://.
        You can use ./web/generate-certificate.py
        to generate the certificate `cert.pem`.
        Note ./web/generate-certificate.py will generate three files but you
        only need to pass the generated cert.pem to this option.
        """,
    )

    parser.add_argument(
        "--doc-root",
        type=str,
        default="./python-api-examples/web",
        help="Path to the web root",
    )

    return parser.parse_args()


class NonStreamingServer:
    def __init__(
        self,
        recognizer: sherpa_onnx.OfflineRecognizer,
        max_batch_size: int,
        max_wait_ms: float,
        nn_pool_size: int,
        max_message_size: int,
        max_queue_size: int,
        max_active_connections: int,
        doc_root: str,
        certificate: Optional[str] = None,
    ):
        """
        Args:
          recognizer:
            An instance of the sherpa_onnx.OfflineRecognizer.
          max_batch_size:
            Max batch size for inference.
          max_wait_ms:
            Max wait time in milliseconds in order to build a batch of
            `max_batch_size`.
          nn_pool_size:
            Number of threads for the thread pool that is used for NN
            computation and decoding.
          max_message_size:
            Max size in bytes per message.
          max_queue_size:
            Max number of messages in the queue for each connection.
          max_active_connections:
            Max number of active connections. Once number of active client
            equals to this limit, the server refuses to accept new connections.
          doc_root:
            Path to the directory where files like index.html for the HTTP
            server locate.
          certificate:
            Optional. If not None, it will use secure websocket.
            You can use ./web/generate-certificate.py to generate
            it (the default generated filename is `cert.pem`).
        """
        self.recognizer = recognizer

        self.certificate = certificate
        self.http_server = HttpServer(doc_root)

        self.nn_pool = ThreadPoolExecutor(
            max_workers=nn_pool_size,
            thread_name_prefix="nn",
        )

        self.stream_queue = asyncio.Queue()

        self.max_wait_ms = max_wait_ms
        self.max_batch_size = max_batch_size
        self.max_message_size = max_message_size
        self.max_queue_size = max_queue_size
        self.max_active_connections = max_active_connections

        self.current_active_connections = 0
        self.sample_rate = int(recognizer.config.feat_config.sampling_rate)

    async def process_request(
        self,
        path: str,
        request_headers: websockets.Headers,
    ) -> Optional[Tuple[http.HTTPStatus, websockets.Headers, bytes]]:
        if "sec-websocket-key" not in request_headers:
            # This is a normal HTTP request
            if path == "/":
                path = "/index.html"
            if path[-1] == "?":
                path = path[:-1]

            if path == "/streaming_record.html":
                response = r"""
<!doctype html><html><head>
<title>Speech recognition with next-gen Kaldi</title><body>
<h2>Only
<a href="/upload.html">/upload.html</a>
and
<a href="/offline_record.html">/offline_record.html</a>
is available for the non-streaming server.<h2>
<br/>
<br/>
Go back to <a href="/upload.html">/upload.html</a>
or <a href="/offline_record.html">/offline_record.html</a>
</body></head></html>
"""
                found = True
                mime_type = "text/html"
            else:
                found, response, mime_type = self.http_server.process_request(path)
            if isinstance(response, str):
                response = response.encode("utf-8")

            if not found:
                status = http.HTTPStatus.NOT_FOUND
            else:
                status = http.HTTPStatus.OK
            header = {"Content-Type": mime_type}
            return status, header, response

        if self.current_active_connections < self.max_active_connections:
            self.current_active_connections += 1
            return None

        # Refuse new connections
        status = http.HTTPStatus.SERVICE_UNAVAILABLE  # 503
        header = {"Hint": "The server is overloaded. Please retry later."}
        response = b"The server is busy. Please retry later."

        return status, header, response

    async def run(self, port: int):
        logging.info("started")

        task = asyncio.create_task(self.stream_consumer_task())

        if self.certificate:
            logging.info(f"Using certificate: {self.certificate}")
            ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)
            ssl_context.load_cert_chain(self.certificate)
        else:
            ssl_context = None
            logging.info("No certificate provided")

        async with websockets.serve(
            self.handle_connection,
            host="",
            port=port,
            max_size=self.max_message_size,
            max_queue=self.max_queue_size,
            process_request=self.process_request,
            ssl=ssl_context,
        ):
            ip_list = ["localhost"]
            if ssl_context:
                ip_list += ["0.0.0.0", "127.0.0.1"]
                ip_list.append(socket.gethostbyname(socket.gethostname()))

            proto = "http://" if ssl_context is None else "https://"
            s = "Please visit one of the following addresses:\n\n"
            for p in ip_list:
                s += "  " + proto + p + f":{port}" "\n"
            logging.info(s)

            await asyncio.Future()  # run forever

        await task  # not reachable

    async def recv_audio_samples(
        self,
        socket: websockets.WebSocketServerProtocol,
    ) -> Tuple[Optional[np.ndarray], Optional[float]]:
        """Receive a tensor from the client.

        The message from the client is a **bytes** buffer.

        The first message can be either "Done" meaning the client won't send
        anything in the future or it can be a buffer containing 8 bytes.
        The first 4 bytes in little endian specifies the sample
        rate of the audio samples; the second 4 bytes in little endian specifies
        the number of bytes in the audio file, which will be sent by the client
        in the subsequent messages.
        Since there is a limit in the message size posed by the websocket
        protocol, the client may send the audio file in multiple messages if the
        audio file is very large.

        The second and remaining messages contain audio samples.

        Please refer to ./offline-websocket-client-decode-files-paralell.py
        and ./offline-websocket-client-decode-files-sequential.py
        for how the client sends the message.

        Args:
          socket:
            The socket for communicating with the client.
        Returns:
          Return a containing:
            - 1-D np.float32 array containing the audio samples
            - sample rate of the audio samples
          or return (None, None) indicating the end of utterance.
        """
        header = await socket.recv()
        if header == "Done":
            return None, None

        assert len(header) >= 8, (
            "The first message should contain at least 8 bytes."
            + f"Given {len(header)}"
        )

        sample_rate = int.from_bytes(header[:4], "little", signed=True)
        expected_num_bytes = int.from_bytes(header[4:8], "little", signed=True)

        received = []
        num_received_bytes = 0
        if len(header) > 8:
            received.append(header[8:])
            num_received_bytes += len(header) - 8

        if num_received_bytes < expected_num_bytes:
            async for message in socket:
                received.append(message)
                num_received_bytes += len(message)
                if num_received_bytes >= expected_num_bytes:
                    break

        assert num_received_bytes == expected_num_bytes, (
            num_received_bytes,
            expected_num_bytes,
        )

        samples = b"".join(received)
        array = np.frombuffer(samples, dtype=np.float32)
        return array, sample_rate

    async def stream_consumer_task(self):
        """This function extracts streams from the queue, batches them up, sends
        them to the RNN-T model for computation and decoding.
        """
        while True:
            if self.stream_queue.empty():
                await asyncio.sleep(self.max_wait_ms / 1000)
                continue

            batch = []
            try:
                while len(batch) < self.max_batch_size:
                    item = self.stream_queue.get_nowait()

                    batch.append(item)
            except asyncio.QueueEmpty:
                pass
            stream_list = [b[0] for b in batch]
            future_list = [b[1] for b in batch]

            loop = asyncio.get_running_loop()
            await loop.run_in_executor(
                self.nn_pool,
                self.recognizer.decode_streams,
                stream_list,
            )

            for f in future_list:
                self.stream_queue.task_done()
                f.set_result(None)

    async def compute_and_decode(
        self,
        stream: sherpa_onnx.OfflineStream,
    ) -> None:
        """Put the stream into the queue and wait it to be processed by the
        consumer task.

        Args:
          stream:
            The stream to be processed. Note: It is changed in-place.
        """
        loop = asyncio.get_running_loop()
        future = loop.create_future()
        await self.stream_queue.put((stream, future))
        await future

    async def handle_connection(
        self,
        socket: websockets.WebSocketServerProtocol,
    ):
        """Receive audio samples from the client, process it, and sends
        deocoding result back to the client.

        Args:
          socket:
            The socket for communicating with the client.
        """
        try:
            await self.handle_connection_impl(socket)
        except websockets.exceptions.ConnectionClosedError:
            logging.info(f"{socket.remote_address} disconnected")
        finally:
            # Decrement so that it can accept new connections
            self.current_active_connections -= 1

            logging.info(
                f"Disconnected: {socket.remote_address}. "
                f"Number of connections: {self.current_active_connections}/{self.max_active_connections}"  # noqa
            )

    async def handle_connection_impl(
        self,
        socket: websockets.WebSocketServerProtocol,
    ):
        """Receive audio samples from the client, process it, and send
        decoding results back to the client.

        Args:
          socket:
            The socket for communicating with the client.
        """
        logging.info(
            f"Connected: {socket.remote_address}. "
            f"Number of connections: {self.current_active_connections}/{self.max_active_connections}"  # noqa
        )

        while True:
            stream = self.recognizer.create_stream()
            samples, sample_rate = await self.recv_audio_samples(socket)
            if samples is None:
                break
            # stream.accept_samples() runs in the main thread

            stream.accept_waveform(sample_rate, samples)

            await self.compute_and_decode(stream)
            result = stream.result.text
            logging.info(f"result: {result}")

            if result:
                await socket.send(result)
            else:
                # If result is an empty string, send something to the client.
                # Otherwise, socket.send() is a no-op and the client will
                # wait for a reply indefinitely.
                await socket.send("<EMPTY>")


def assert_file_exists(filename: str):
    assert Path(filename).is_file(), (
        f"{filename} does not exist!\n"
        "Please refer to "
        "https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
    )


def create_recognizer(args) -> sherpa_onnx.OfflineRecognizer:
    if args.encoder:
        assert len(args.paraformer) == 0, args.paraformer
        assert len(args.nemo_ctc) == 0, args.nemo_ctc
        assert len(args.whisper_encoder) == 0, args.whisper_encoder
        assert len(args.whisper_decoder) == 0, args.whisper_decoder

        assert_file_exists(args.encoder)
        assert_file_exists(args.decoder)
        assert_file_exists(args.joiner)

        recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
            encoder=args.encoder,
            decoder=args.decoder,
            joiner=args.joiner,
            tokens=args.tokens,
            num_threads=args.num_threads,
            sample_rate=args.sample_rate,
            feature_dim=args.feat_dim,
            decoding_method=args.decoding_method,
            max_active_paths=args.max_active_paths,
        )
    elif args.paraformer:
        assert len(args.nemo_ctc) == 0, args.nemo_ctc
        assert len(args.whisper_encoder) == 0, args.whisper_encoder
        assert len(args.whisper_decoder) == 0, args.whisper_decoder

        assert_file_exists(args.paraformer)

        recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
            paraformer=args.paraformer,
            tokens=args.tokens,
            num_threads=args.num_threads,
            sample_rate=args.sample_rate,
            feature_dim=args.feat_dim,
            decoding_method=args.decoding_method,
        )
    elif args.nemo_ctc:
        assert len(args.whisper_encoder) == 0, args.whisper_encoder
        assert len(args.whisper_decoder) == 0, args.whisper_decoder

        assert_file_exists(args.nemo_ctc)

        recognizer = sherpa_onnx.OfflineRecognizer.from_nemo_ctc(
            model=args.nemo_ctc,
            tokens=args.tokens,
            num_threads=args.num_threads,
            sample_rate=args.sample_rate,
            feature_dim=args.feat_dim,
            decoding_method=args.decoding_method,
        )
    elif args.whisper_encoder:
        assert_file_exists(args.whisper_encoder)
        assert_file_exists(args.whisper_decoder)

        recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
            encoder=args.whisper_encoder,
            decoder=args.whisper_decoder,
            tokens=args.tokens,
            num_threads=args.num_threads,
            decoding_method=args.decoding_method,
        )
    else:
        raise ValueError("Please specify at least one model")

    return recognizer


def main():
    args = get_args()
    logging.info(vars(args))
    check_args(args)

    recognizer = create_recognizer(args)

    port = args.port
    max_wait_ms = args.max_wait_ms
    max_batch_size = args.max_batch_size
    nn_pool_size = args.nn_pool_size
    max_message_size = args.max_message_size
    max_queue_size = args.max_queue_size
    max_active_connections = args.max_active_connections
    certificate = args.certificate
    doc_root = args.doc_root

    if certificate and not Path(certificate).is_file():
        raise ValueError(f"{certificate} does not exist")

    if not Path(doc_root).is_dir():
        raise ValueError(f"Directory {doc_root} does not exist")

    non_streaming_server = NonStreamingServer(
        recognizer=recognizer,
        max_wait_ms=max_wait_ms,
        max_batch_size=max_batch_size,
        nn_pool_size=nn_pool_size,
        max_message_size=max_message_size,
        max_queue_size=max_queue_size,
        max_active_connections=max_active_connections,
        certificate=certificate,
        doc_root=doc_root,
    )
    asyncio.run(non_streaming_server.run(port))


if __name__ == "__main__":
    log_filename = "log/log-non-streaming-server"
    setup_logger(log_filename)
    main()