speaker-embedding-extractor-model.cc
3.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
// sherpa-onnx/csrc/speaker-embedding-extractor-model.cc
//
// Copyright (c) 2023-2024 Xiaomi Corporation
#include "sherpa-onnx/csrc/speaker-embedding-extractor-model.h"
#include <string>
#include <utility>
#include <vector>
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/session.h"
#include "sherpa-onnx/csrc/speaker-embedding-extractor-model-meta-data.h"
namespace sherpa_onnx {
class SpeakerEmbeddingExtractorModel::Impl {
public:
explicit Impl(const SpeakerEmbeddingExtractorConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_ERROR),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
{
auto buf = ReadFile(config.model);
Init(buf.data(), buf.size());
}
}
Ort::Value Compute(Ort::Value x) const {
std::array<Ort::Value, 1> inputs = {std::move(x)};
auto outputs =
sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
output_names_ptr_.data(), output_names_ptr_.size());
return std::move(outputs[0]);
}
const SpeakerEmbeddingExtractorModelMetaData &GetMetaData() const {
return meta_data_;
}
private:
void Init(void *model_data, size_t model_data_length) {
sess_ = std::make_unique<Ort::Session>(env_, model_data, model_data_length,
sess_opts_);
GetInputNames(sess_.get(), &input_names_, &input_names_ptr_);
GetOutputNames(sess_.get(), &output_names_, &output_names_ptr_);
// get meta data
Ort::ModelMetadata meta_data = sess_->GetModelMetadata();
if (config_.debug) {
std::ostringstream os;
PrintModelMetadata(os, meta_data);
SHERPA_ONNX_LOGE("%s", os.str().c_str());
}
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
SHERPA_ONNX_READ_META_DATA(meta_data_.output_dim, "output_dim");
SHERPA_ONNX_READ_META_DATA(meta_data_.sample_rate, "sample_rate");
SHERPA_ONNX_READ_META_DATA(meta_data_.normalize_samples,
"normalize_samples");
SHERPA_ONNX_READ_META_DATA_STR(meta_data_.language, "language");
SHERPA_ONNX_READ_META_DATA_STR_WITH_DEFAULT(
meta_data_.feature_normalize_type, "feature_normalize_type", "");
std::string framework;
SHERPA_ONNX_READ_META_DATA_STR(framework, "framework");
if (framework != "wespeaker" && framework != "3d-speaker") {
SHERPA_ONNX_LOGE("Expect a wespeaker or a 3d-speaker model, given: %s",
framework.c_str());
exit(-1);
}
}
private:
SpeakerEmbeddingExtractorConfig config_;
Ort::Env env_;
Ort::SessionOptions sess_opts_;
Ort::AllocatorWithDefaultOptions allocator_;
std::unique_ptr<Ort::Session> sess_;
std::vector<std::string> input_names_;
std::vector<const char *> input_names_ptr_;
std::vector<std::string> output_names_;
std::vector<const char *> output_names_ptr_;
SpeakerEmbeddingExtractorModelMetaData meta_data_;
};
SpeakerEmbeddingExtractorModel::SpeakerEmbeddingExtractorModel(
const SpeakerEmbeddingExtractorConfig &config)
: impl_(std::make_unique<Impl>(config)) {}
SpeakerEmbeddingExtractorModel::~SpeakerEmbeddingExtractorModel() = default;
const SpeakerEmbeddingExtractorModelMetaData &
SpeakerEmbeddingExtractorModel::GetMetaData() const {
return impl_->GetMetaData();
}
Ort::Value SpeakerEmbeddingExtractorModel::Compute(Ort::Value x) const {
return impl_->Compute(std::move(x));
}
} // namespace sherpa_onnx