online-transducer-greedy-search-decoder.cc
4.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
// sherpa-onnx/csrc/online-transducer-greedy-search-decoder.cc
//
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/online-transducer-greedy-search-decoder.h"
#include <algorithm>
#include <utility>
#include <vector>
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
namespace sherpa_onnx {
static void UseCachedDecoderOut(
const std::vector<OnlineTransducerDecoderResult> &results,
Ort::Value *decoder_out) {
std::vector<int64_t> shape =
decoder_out->GetTensorTypeAndShapeInfo().GetShape();
float *dst = decoder_out->GetTensorMutableData<float>();
for (const auto &r : results) {
if (r.decoder_out) {
const float *src = r.decoder_out.GetTensorData<float>();
std::copy(src, src + shape[1], dst);
}
dst += shape[1];
}
}
static void UpdateCachedDecoderOut(
OrtAllocator *allocator, const Ort::Value *decoder_out,
std::vector<OnlineTransducerDecoderResult> *results) {
std::vector<int64_t> shape =
decoder_out->GetTensorTypeAndShapeInfo().GetShape();
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 2> v_shape{1, shape[1]};
const float *src = decoder_out->GetTensorData<float>();
for (auto &r : *results) {
if (!r.decoder_out) {
r.decoder_out = Ort::Value::CreateTensor<float>(allocator, v_shape.data(),
v_shape.size());
}
float *dst = r.decoder_out.GetTensorMutableData<float>();
std::copy(src, src + shape[1], dst);
src += shape[1];
}
}
OnlineTransducerDecoderResult
OnlineTransducerGreedySearchDecoder::GetEmptyResult() const {
int32_t context_size = model_->ContextSize();
int32_t blank_id = 0; // always 0
OnlineTransducerDecoderResult r;
r.tokens.resize(context_size, -1);
r.tokens.back() = blank_id;
return r;
}
void OnlineTransducerGreedySearchDecoder::StripLeadingBlanks(
OnlineTransducerDecoderResult *r) const {
int32_t context_size = model_->ContextSize();
auto start = r->tokens.begin() + context_size;
auto end = r->tokens.end();
r->tokens = std::vector<int64_t>(start, end);
}
void OnlineTransducerGreedySearchDecoder::Decode(
Ort::Value encoder_out,
std::vector<OnlineTransducerDecoderResult> *result) {
std::vector<int64_t> encoder_out_shape =
encoder_out.GetTensorTypeAndShapeInfo().GetShape();
if (encoder_out_shape[0] != result->size()) {
SHERPA_ONNX_LOGE(
"Size mismatch! encoder_out.size(0) %d, result.size(0): %d",
static_cast<int32_t>(encoder_out_shape[0]),
static_cast<int32_t>(result->size()));
exit(-1);
}
int32_t batch_size = static_cast<int32_t>(encoder_out_shape[0]);
int32_t num_frames = static_cast<int32_t>(encoder_out_shape[1]);
int32_t vocab_size = model_->VocabSize();
Ort::Value decoder_input = model_->BuildDecoderInput(*result);
Ort::Value decoder_out = model_->RunDecoder(std::move(decoder_input));
UseCachedDecoderOut(*result, &decoder_out);
for (int32_t t = 0; t != num_frames; ++t) {
Ort::Value cur_encoder_out =
GetEncoderOutFrame(model_->Allocator(), &encoder_out, t);
Ort::Value logit = model_->RunJoiner(
std::move(cur_encoder_out), Clone(model_->Allocator(), &decoder_out));
const float *p_logit = logit.GetTensorData<float>();
bool emitted = false;
for (int32_t i = 0; i < batch_size; ++i, p_logit += vocab_size) {
auto &r = (*result)[i];
auto y = static_cast<int32_t>(std::distance(
static_cast<const float *>(p_logit),
std::max_element(static_cast<const float *>(p_logit),
static_cast<const float *>(p_logit) + vocab_size)));
if (y != 0) {
emitted = true;
r.tokens.push_back(y);
r.timestamps.push_back(t + r.frame_offset);
r.num_trailing_blanks = 0;
} else {
++r.num_trailing_blanks;
}
}
if (emitted) {
Ort::Value decoder_input = model_->BuildDecoderInput(*result);
decoder_out = model_->RunDecoder(std::move(decoder_input));
}
}
UpdateCachedDecoderOut(model_->Allocator(), &decoder_out, result);
// Update frame_offset
for (auto &r : *result) {
r.frame_offset += num_frames;
}
}
} // namespace sherpa_onnx