StreamingAsrWorker.ets
10.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import worker, { ErrorEvent, MessageEvents, ThreadWorkerGlobalScope } from '@ohos.worker';
import {
OnlineModelConfig,
OnlineRecognizer,
OnlineRecognizerConfig,
OnlineStream,
readWaveFromBinary,
Samples
} from 'sherpa_onnx';
import { fileIo } from '@kit.CoreFileKit';
const workerPort: ThreadWorkerGlobalScope = worker.workerPort;
let recognizer: OnlineRecognizer;
let micStream: OnlineStream;
function getModelConfig(type: number): OnlineModelConfig {
const modelConfig = new OnlineModelConfig();
switch (type) {
case 0: {
const modelDir = 'sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20';
modelConfig.transducer.encoder = `${modelDir}/encoder-epoch-99-avg-1.onnx`;
modelConfig.transducer.decoder = `${modelDir}/decoder-epoch-99-avg-1.onnx`;
modelConfig.transducer.joiner = `${modelDir}/joiner-epoch-99-avg-1.onnx`;
modelConfig.tokens = `${modelDir}/tokens.txt`;
modelConfig.modelType = 'zipformer';
break;
}
case 1: {
const modelDir = 'sherpa-onnx-lstm-zh-2023-02-20';
modelConfig.transducer.encoder = `${modelDir}/encoder-epoch-11-avg-1.onnx`;
modelConfig.transducer.decoder = `${modelDir}/decoder-epoch-11-avg-1.onnx`;
modelConfig.transducer.joiner = `${modelDir}/joiner-epoch-11-avg-1.onnx`;
modelConfig.tokens = `${modelDir}/tokens.txt`;
modelConfig.modelType = 'lstm';
break;
}
case 2: {
const modelDir = 'sherpa-onnx-lstm-en-2023-02-17';
modelConfig.transducer.encoder = `${modelDir}/encoder-epoch-99-avg-1.onnx`;
modelConfig.transducer.decoder = `${modelDir}/decoder-epoch-99-avg-1.onnx`;
modelConfig.transducer.joiner = `${modelDir}/joiner-epoch-99-avg-1.onnx`;
modelConfig.tokens = `${modelDir}/tokens.txt`;
modelConfig.modelType = 'lstm';
break;
}
case 3: {
const modelDir = 'icefall-asr-zipformer-streaming-wenetspeech-20230615';
modelConfig.transducer.encoder = `${modelDir}/exp/encoder-epoch-12-avg-4-chunk-16-left-128.int8.onnx`;
modelConfig.transducer.decoder = `${modelDir}/exp/decoder-epoch-12-avg-4-chunk-16-left-128.onnx`;
modelConfig.transducer.joiner = `${modelDir}/exp/joiner-epoch-12-avg-4-chunk-16-left-128.onnx`;
modelConfig.tokens = `${modelDir}/data/lang_char/tokens.txt`;
modelConfig.modelType = 'zipformer2';
break;
}
case 4: {
const modelDir = 'icefall-asr-zipformer-streaming-wenetspeech-20230615';
modelConfig.transducer.encoder = `${modelDir}/exp/encoder-epoch-12-avg-4-chunk-16-left-128.onnx`;
modelConfig.transducer.decoder = `${modelDir}/exp/decoder-epoch-12-avg-4-chunk-16-left-128.onnx`;
modelConfig.transducer.joiner = `${modelDir}/exp/joiner-epoch-12-avg-4-chunk-16-left-128.onnx`;
modelConfig.tokens = `${modelDir}/data/lang_char/tokens.txt`;
modelConfig.modelType = 'zipformer2';
break;
}
case 5: {
const modelDir = 'sherpa-onnx-streaming-paraformer-bilingual-zh-en';
modelConfig.paraformer.encoder = `${modelDir}/encoder.int8.onnx`;
modelConfig.paraformer.decoder = `${modelDir}/decoder.int8.onnx`;
modelConfig.tokens = `${modelDir}/tokens.txt`;
modelConfig.modelType = 'paraformer';
break;
}
case 6: {
const modelDir = 'sherpa-onnx-streaming-zipformer-en-2023-06-26';
modelConfig.transducer.encoder = `${modelDir}/encoder-epoch-99-avg-1-chunk-16-left-128.int8.onnx`;
modelConfig.transducer.decoder = `${modelDir}/decoder-epoch-99-avg-1-chunk-16-left-128.onnx`;
modelConfig.transducer.joiner = `${modelDir}/joiner-epoch-99-avg-1-chunk-16-left-128.onnx`;
modelConfig.tokens = `${modelDir}/tokens.txt`;
modelConfig.modelType = 'zipformer2';
break;
}
case 7: {
const modelDir = 'sherpa-onnx-streaming-zipformer-fr-2023-04-14';
modelConfig.transducer.encoder = `${modelDir}/encoder-epoch-29-avg-9-with-averaged-model.int8.onnx`;
modelConfig.transducer.decoder = `${modelDir}/decoder-epoch-29-avg-9-with-averaged-model.onnx`;
modelConfig.transducer.joiner = `${modelDir}/joiner-epoch-29-avg-9-with-averaged-model.onnx`;
modelConfig.tokens = `${modelDir}/tokens.txt`;
modelConfig.modelType = 'zipformer';
break;
}
case 8: {
const modelDir = 'sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20';
modelConfig.transducer.encoder = `${modelDir}/encoder-epoch-99-avg-1.int8.onnx`;
modelConfig.transducer.decoder = `${modelDir}/decoder-epoch-99-avg-1.onnx`;
modelConfig.transducer.joiner = `${modelDir}/joiner-epoch-99-avg-1.int8.onnx`;
modelConfig.tokens = `${modelDir}/tokens.txt`;
modelConfig.modelType = 'zipformer';
break;
}
case 9: {
const modelDir = 'sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23'
modelConfig.transducer.encoder = `${modelDir}/encoder-epoch-99-avg-1.int8.onnx`;
modelConfig.transducer.decoder = `${modelDir}/decoder-epoch-99-avg-1.onnx`;
modelConfig.transducer.joiner = `${modelDir}/joiner-epoch-99-avg-1.int8.onnx`;
modelConfig.tokens = `${modelDir}/tokens.txt`;
modelConfig.modelType = 'zipformer';
break;
}
case 10: {
const modelDir = 'sherpa-onnx-streaming-zipformer-en-20M-2023-02-17';
modelConfig.transducer.encoder = `${modelDir}/encoder-epoch-99-avg-1.int8.onnx`;
modelConfig.transducer.decoder = `${modelDir}/decoder-epoch-99-avg-1.onnx`;
modelConfig.transducer.joiner = `${modelDir}/joiner-epoch-99-avg-1.int8.onnx`;
modelConfig.tokens = `${modelDir}/tokens.txt`;
modelConfig.modelType = 'zipformer';
break;
}
case 14: {
const modelDir = 'sherpa-onnx-streaming-zipformer-korean-2024-06-16';
modelConfig.transducer.encoder = `${modelDir}/encoder-epoch-99-avg-1.int8.onnx`;
modelConfig.transducer.decoder = `${modelDir}/decoder-epoch-99-avg-1.onnx`;
modelConfig.transducer.joiner = `${modelDir}/joiner-epoch-99-avg-1.int8.onnx`;
modelConfig.tokens = `${modelDir}/tokens.txt`;
modelConfig.modelType = 'zipformer';
break;
}
default: {
console.log(`Please specify a supported type. Given type ${type}`);
}
}
return modelConfig;
}
function initStreamingAsr(context: Context): OnlineRecognizer {
let type: number;
/*
If you use type = 8, then you should have the following directory structure in the rawfile directory
(py38) fangjuns-MacBook-Pro:rawfile fangjun$ pwd
/Users/fangjun/open-source/sherpa-onnx/harmony-os/SherpaOnnxStreamingAsr/entry/src/main/resources/rawfile
(py38) fangjuns-MacBook-Pro:rawfile fangjun$ ls
sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20
(py38) fangjuns-MacBook-Pro:rawfile fangjun$ tree .
.
└── sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20
├── decoder-epoch-99-avg-1.onnx
├── encoder-epoch-99-avg-1.int8.onnx
├── joiner-epoch-99-avg-1.int8.onnx
└── tokens.txt
1 directory, 4 files
You can download model files from
https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
Note that please delete files that are not used. Otherwise, you APP will be very large
due to containing unused large files.
*/
type = 8;
const config: OnlineRecognizerConfig = new OnlineRecognizerConfig();
config.modelConfig = getModelConfig(type);
config.modelConfig.debug = true;
config.modelConfig.numThreads = 2;
config.enableEndpoint = true;
return new OnlineRecognizer(config, context.resourceManager);
}
interface DecodeFileResult {
text: string;
duration: number;
}
function decodeFile(filename: string): DecodeFileResult {
const fp = fileIo.openSync(filename);
const stat = fileIo.statSync(fp.fd);
const arrayBuffer = new ArrayBuffer(stat.size);
fileIo.readSync(fp.fd, arrayBuffer);
const data: Uint8Array = new Uint8Array(arrayBuffer);
const wave: Samples = readWaveFromBinary(data) as Samples;
console.log(`Sample rate: ${wave.sampleRate}`);
const stream = recognizer.createStream();
stream.acceptWaveform(wave);
const tailPadding = new Float32Array(0.5 * wave.sampleRate);
tailPadding.fill(0);
stream.acceptWaveform({ samples: tailPadding, sampleRate: wave.sampleRate });
while (recognizer.isReady(stream)) {
recognizer.decode(stream);
}
const audioDuration = wave.samples.length / wave.sampleRate;
return { text: recognizer.getResult(stream).text, duration: audioDuration };
}
/**
* Defines the event handler to be called when the worker thread receives a message sent by the host thread.
* The event handler is executed in the worker thread.
*
* @param e message data
*/
workerPort.onmessage = (e: MessageEvents) => {
const msgType = e.data['msgType'] as string;
if (msgType != 'streaming-asr-decode-mic-samples') {
console.log(`from the main thread, msg-type: ${msgType}`);
}
if (msgType == 'init-streaming-asr' && !recognizer) {
console.log('initializing streaming ASR...');
const context = e.data['context'] as Context;
recognizer = initStreamingAsr(context);
console.log('streaming ASR is initialized. ');
workerPort.postMessage({ 'msgType': 'init-streaming-asr-done' });
}
if (msgType == 'streaming-asr-decode-file') {
const filename = e.data['filename'] as string;
console.log(`decoding ${filename}`);
const result = decodeFile(filename);
workerPort.postMessage({
'msgType': 'streaming-asr-decode-file-done', text: result.text, duration: result.duration
});
}
if (msgType == 'streaming-asr-decode-mic-start') {
micStream = recognizer.createStream();
}
if (msgType == 'streaming-asr-decode-mic-stop') { // nothing to do
}
if (msgType == 'streaming-asr-decode-mic-samples') {
const samples = e.data['samples'] as Float32Array;
const sampleRate = e.data['sampleRate'] as number;
micStream.acceptWaveform({ samples, sampleRate });
while (recognizer.isReady(micStream)) {
recognizer.decode(micStream);
let isEndpoint = false;
let text = recognizer.getResult(micStream).text;
if (recognizer.isEndpoint(micStream)) {
isEndpoint = true;
recognizer.reset(micStream);
}
if (text.trim() != '') {
workerPort.postMessage({
'msgType': 'streaming-asr-decode-mic-result', text: text, isEndpoint: isEndpoint,
});
}
}
}
}
/**
* Defines the event handler to be called when the worker receives a message that cannot be deserialized.
* The event handler is executed in the worker thread.
*
* @param e message data
*/
workerPort.onmessageerror = (e: MessageEvents) => {
}
/**
* Defines the event handler to be called when an exception occurs during worker execution.
* The event handler is executed in the worker thread.
*
* @param e error message
*/
workerPort.onerror = (e: ErrorEvent) => {
}