spoken-language-identification.cc
3.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// sherpa-onnx/csrc/spoken-language-identification.cc
//
// Copyright (c) 2024 Xiaomi Corporation
#include "sherpa-onnx/csrc/spoken-language-identification.h"
#include <string>
#if __ANDROID_API__ >= 9
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif
#include "sherpa-onnx/csrc/file-utils.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/spoken-language-identification-impl.h"
namespace sherpa_onnx {
void SpokenLanguageIdentificationWhisperConfig::Register(ParseOptions *po) {
po->Register(
"whisper-encoder", &encoder,
"Path to then encoder of a whisper multilingual model. Support only "
"tiny, base, small, medium, large.");
po->Register(
"whisper-decoder", &decoder,
"Path to the decoder of a whisper multilingual model. Support only "
"tiny, base, small, medium, large.");
po->Register(
"whisper-tail-paddings", &tail_paddings,
"Suggested value: 300 for multilingual models. "
"Since we have removed the 30-second constraint, we need to add some "
"tail padding frames "
"so that whisper can detect the eot token. Leave it to -1 to use 1000");
}
bool SpokenLanguageIdentificationWhisperConfig::Validate() const {
if (encoder.empty()) {
SHERPA_ONNX_LOGE("Please provide --whisper-encoder");
return false;
}
if (!FileExists(encoder)) {
SHERPA_ONNX_LOGE("whisper encoder file '%s' does not exist",
encoder.c_str());
return false;
}
if (decoder.empty()) {
SHERPA_ONNX_LOGE("Please provide --whisper-decoder");
return false;
}
if (!FileExists(decoder)) {
SHERPA_ONNX_LOGE("whisper decoder file '%s' does not exist",
decoder.c_str());
return false;
}
return true;
}
std::string SpokenLanguageIdentificationWhisperConfig::ToString() const {
std::ostringstream os;
os << "SpokenLanguageIdentificationWhisperConfig(";
os << "encoder=\"" << encoder << "\", ";
os << "decoder=\"" << decoder << "\", ";
os << "tail_paddings=" << tail_paddings << ")";
return os.str();
}
void SpokenLanguageIdentificationConfig::Register(ParseOptions *po) {
whisper.Register(po);
po->Register("num-threads", &num_threads,
"Number of threads to run the neural network");
po->Register("debug", &debug,
"true to print model information while loading it.");
po->Register("provider", &provider,
"Specify a provider to use: cpu, cuda, coreml");
}
bool SpokenLanguageIdentificationConfig::Validate() const {
if (!whisper.Validate()) {
return false;
}
return true;
}
std::string SpokenLanguageIdentificationConfig::ToString() const {
std::ostringstream os;
os << "SpokenLanguageIdentificationConfig(";
os << "whisper=" << whisper.ToString() << ", ";
os << "num_threads=" << num_threads << ", ";
os << "debug=" << (debug ? "True" : "False") << ", ";
os << "provider=\"" << provider << "\")";
return os.str();
}
SpokenLanguageIdentification::SpokenLanguageIdentification(
const SpokenLanguageIdentificationConfig &config)
: impl_(SpokenLanguageIdentificationImpl::Create(config)) {}
#if __ANDROID_API__ >= 9
SpokenLanguageIdentification::SpokenLanguageIdentification(
AAssetManager *mgr, const SpokenLanguageIdentificationConfig &config)
: impl_(SpokenLanguageIdentificationImpl::Create(mgr, config)) {}
#endif
SpokenLanguageIdentification::~SpokenLanguageIdentification() = default;
std::unique_ptr<OfflineStream> SpokenLanguageIdentification::CreateStream()
const {
return impl_->CreateStream();
}
std::string SpokenLanguageIdentification::Compute(OfflineStream *s) const {
return impl_->Compute(s);
}
} // namespace sherpa_onnx