features.cc
11.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
// sherpa-onnx/csrc/features.cc
//
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/features.h"
#include <algorithm>
#include <memory>
#include <mutex> // NOLINT
#include <sstream>
#include <vector>
#include "kaldi-native-fbank/csrc/online-feature.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/resample.h"
namespace sherpa_onnx {
void FeatureExtractorConfig::Register(ParseOptions *po) {
po->Register("sample-rate", &sampling_rate,
"Sampling rate of the input waveform. "
"Note: You can have a different "
"sample rate for the input waveform. We will do resampling "
"inside the feature extractor");
po->Register("feat-dim", &feature_dim,
"Feature dimension. Must match the one expected by the model. "
"Not used by whisper and CED models");
po->Register("low-freq", &low_freq, "Low cutoff frequency for mel bins");
po->Register("high-freq", &high_freq,
"High cutoff frequency for mel bins "
"(if <= 0, offset from Nyquist)");
po->Register("dither", &dither,
"Dithering constant (0.0 means no dither). "
"By default the audio samples are in range [-1,+1], "
"so 0.00003 is a good value, "
"equivalent to the default 1.0 from kaldi");
}
std::string FeatureExtractorConfig::ToString() const {
std::ostringstream os;
os << "FeatureExtractorConfig(";
os << "sampling_rate=" << sampling_rate << ", ";
os << "feature_dim=" << feature_dim << ", ";
os << "low_freq=" << low_freq << ", ";
os << "high_freq=" << high_freq << ", ";
os << "dither=" << dither << ", ";
os << "normalize_samples=" << (normalize_samples ? "True" : "False") << ", ";
os << "snip_edges=" << (snip_edges ? "True" : "False") << ")";
return os.str();
}
class FeatureExtractor::Impl {
public:
explicit Impl(const FeatureExtractorConfig &config) : config_(config) {
if (config_.is_mfcc) {
InitMfcc();
} else if (config_.is_whisper) {
InitWhisper();
} else if (config_.is_t_one) {
InitRawAudioSamples();
} else {
InitFbank();
}
}
void AcceptWaveform(int32_t sampling_rate, const float *waveform, int32_t n) {
if (config_.normalize_samples) {
AcceptWaveformImpl(sampling_rate, waveform, n);
} else {
std::vector<float> buf(n);
for (int32_t i = 0; i != n; ++i) {
buf[i] = waveform[i] * 32768;
}
AcceptWaveformImpl(sampling_rate, buf.data(), n);
}
}
void AcceptWaveformImpl(int32_t sampling_rate, const float *waveform,
int32_t n) {
std::lock_guard<std::mutex> lock(mutex_);
if (resampler_) {
if (sampling_rate != resampler_->GetInputSamplingRate()) {
SHERPA_ONNX_LOGE(
"You changed the input sampling rate!! Expected: %d, given: "
"%d",
resampler_->GetInputSamplingRate(), sampling_rate);
exit(-1);
}
std::vector<float> samples;
resampler_->Resample(waveform, n, false, &samples);
AcceptWaveformWrapper(config_.sampling_rate, samples.data(),
samples.size());
return;
}
if (sampling_rate != config_.sampling_rate) {
SHERPA_ONNX_LOGE(
"Creating a resampler:\n"
" in_sample_rate: %d\n"
" output_sample_rate: %d\n",
sampling_rate, static_cast<int32_t>(config_.sampling_rate));
float min_freq = std::min<int32_t>(sampling_rate, config_.sampling_rate);
float lowpass_cutoff = 0.99 * 0.5 * min_freq;
int32_t lowpass_filter_width = 6;
resampler_ = std::make_unique<LinearResample>(
sampling_rate, config_.sampling_rate, lowpass_cutoff,
lowpass_filter_width);
std::vector<float> samples;
resampler_->Resample(waveform, n, false, &samples);
AcceptWaveformWrapper(config_.sampling_rate, samples.data(),
samples.size());
return;
}
AcceptWaveformWrapper(sampling_rate, waveform, n);
}
void InputFinished() const {
std::lock_guard<std::mutex> lock(mutex_);
if (fbank_) {
fbank_->InputFinished();
return;
} else if (whisper_fbank_) {
whisper_fbank_->InputFinished();
return;
} else if (raw_audio_) {
raw_audio_->InputFinished();
return;
} else if (mfcc_) {
mfcc_->InputFinished();
return;
}
SHERPA_ONNX_LOGE("unreachable code");
SHERPA_ONNX_EXIT(-1);
}
int32_t NumFramesReady() const {
if (fbank_) {
return fbank_->NumFramesReady();
} else if (whisper_fbank_) {
return whisper_fbank_->NumFramesReady();
} else if (raw_audio_) {
return raw_audio_->NumFramesReady();
} else if (mfcc_) {
return mfcc_->NumFramesReady();
}
SHERPA_ONNX_LOGE("unreachable code");
SHERPA_ONNX_EXIT(-1);
return -1;
}
bool IsLastFrame(int32_t frame) const {
std::lock_guard<std::mutex> lock(mutex_);
if (fbank_) {
return fbank_->IsLastFrame(frame);
} else if (whisper_fbank_) {
return whisper_fbank_->IsLastFrame(frame);
} else if (raw_audio_) {
return raw_audio_->IsLastFrame(frame);
} else if (mfcc_) {
return mfcc_->IsLastFrame(frame);
}
SHERPA_ONNX_LOGE("unreachable code");
SHERPA_ONNX_EXIT(-1);
return false;
}
std::vector<float> GetFrames(int32_t frame_index, int32_t n) {
std::lock_guard<std::mutex> lock(mutex_);
if (frame_index + n > NumFramesReady()) {
SHERPA_ONNX_LOGE("%d + %d > %d\n", frame_index, n, NumFramesReady());
SHERPA_ONNX_EXIT(-1);
}
int32_t discard_num = frame_index - last_frame_index_;
if (discard_num < 0) {
SHERPA_ONNX_LOGE("last_frame_index_: %d, frame_index_: %d",
last_frame_index_, frame_index);
SHERPA_ONNX_EXIT(-1);
}
PopWrapper(discard_num);
int32_t feature_dim = FeatureDim();
std::vector<float> features(feature_dim * n);
float *p = features.data();
for (int32_t i = 0; i != n; ++i) {
const float *f = GetFrameWrapper(i + frame_index);
std::copy(f, f + feature_dim, p);
p += feature_dim;
}
last_frame_index_ = frame_index;
return features;
}
int32_t FeatureDim() const {
if (fbank_ || whisper_fbank_) {
return opts_.mel_opts.num_bins;
} else if (mfcc_) {
return mfcc_opts_.num_ceps;
} else if (raw_audio_) {
return raw_audio_->Dim();
}
SHERPA_ONNX_LOGE("unreachable code");
SHERPA_ONNX_EXIT(-1);
return -1;
}
private:
void AcceptWaveformWrapper(float sampling_rate, const float *waveform,
int32_t n) const {
if (fbank_) {
fbank_->AcceptWaveform(sampling_rate, waveform, n);
return;
} else if (whisper_fbank_) {
whisper_fbank_->AcceptWaveform(sampling_rate, waveform, n);
return;
} else if (raw_audio_) {
raw_audio_->AcceptWaveform(sampling_rate, waveform, n);
return;
} else if (mfcc_) {
mfcc_->AcceptWaveform(sampling_rate, waveform, n);
return;
}
SHERPA_ONNX_LOGE("unreachable code");
SHERPA_ONNX_EXIT(-1);
}
const float *GetFrameWrapper(int32_t frame_index) const {
if (fbank_) {
return fbank_->GetFrame(frame_index);
} else if (whisper_fbank_) {
return whisper_fbank_->GetFrame(frame_index);
} else if (raw_audio_) {
return raw_audio_->GetFrame(frame_index);
} else if (mfcc_) {
return mfcc_->GetFrame(frame_index);
}
SHERPA_ONNX_LOGE("unreachable code");
SHERPA_ONNX_EXIT(-1);
return nullptr;
}
void PopWrapper(int32_t discard_num) const {
if (fbank_) {
fbank_->Pop(discard_num);
return;
} else if (whisper_fbank_) {
whisper_fbank_->Pop(discard_num);
return;
} else if (raw_audio_) {
raw_audio_->Pop(discard_num);
return;
} else if (mfcc_) {
mfcc_->Pop(discard_num);
return;
}
SHERPA_ONNX_LOGE("unreachable code");
SHERPA_ONNX_EXIT(-1);
}
void InitFbank() {
opts_.frame_opts.dither = config_.dither;
opts_.frame_opts.snip_edges = config_.snip_edges;
opts_.frame_opts.samp_freq = config_.sampling_rate;
opts_.frame_opts.frame_shift_ms = config_.frame_shift_ms;
opts_.frame_opts.frame_length_ms = config_.frame_length_ms;
opts_.frame_opts.remove_dc_offset = config_.remove_dc_offset;
opts_.frame_opts.preemph_coeff = config_.preemph_coeff;
opts_.frame_opts.window_type = config_.window_type;
opts_.frame_opts.round_to_power_of_two = config_.round_to_power_of_two;
opts_.mel_opts.num_bins = config_.feature_dim;
opts_.mel_opts.high_freq = config_.high_freq;
opts_.mel_opts.low_freq = config_.low_freq;
opts_.mel_opts.is_librosa = config_.is_librosa;
fbank_ = std::make_unique<knf::OnlineFbank>(opts_);
}
void InitMfcc() {
mfcc_opts_.frame_opts.dither = config_.dither;
mfcc_opts_.frame_opts.snip_edges = config_.snip_edges;
mfcc_opts_.frame_opts.samp_freq = config_.sampling_rate;
mfcc_opts_.frame_opts.frame_shift_ms = config_.frame_shift_ms;
mfcc_opts_.frame_opts.frame_length_ms = config_.frame_length_ms;
mfcc_opts_.frame_opts.remove_dc_offset = config_.remove_dc_offset;
mfcc_opts_.frame_opts.preemph_coeff = config_.preemph_coeff;
mfcc_opts_.frame_opts.window_type = config_.window_type;
mfcc_opts_.frame_opts.round_to_power_of_two = config_.round_to_power_of_two;
mfcc_opts_.mel_opts.num_bins = config_.feature_dim;
mfcc_opts_.mel_opts.high_freq = config_.high_freq;
mfcc_opts_.mel_opts.low_freq = config_.low_freq;
mfcc_opts_.mel_opts.is_librosa = config_.is_librosa;
mfcc_opts_.num_ceps = config_.num_ceps;
mfcc_opts_.use_energy = config_.use_energy;
mfcc_ = std::make_unique<knf::OnlineMfcc>(mfcc_opts_);
}
void InitWhisper() {
config_.normalize_samples = true;
opts_.frame_opts.samp_freq = 16000;
opts_.mel_opts.num_bins = config_.feature_dim;
knf::WhisperFeatureOptions whisper_opts;
whisper_opts.frame_opts = opts_.frame_opts;
whisper_opts.dim = config_.feature_dim;
whisper_fbank_ = std::make_unique<knf::OnlineWhisperFbank>(whisper_opts);
config_.sampling_rate = opts_.frame_opts.samp_freq;
}
void InitRawAudioSamples() {
opts_raw_audio_.frame_opts.samp_freq = config_.sampling_rate;
opts_raw_audio_.frame_opts.frame_length_ms = config_.frame_length_ms;
opts_raw_audio_.frame_opts.frame_shift_ms = config_.frame_shift_ms;
raw_audio_ = std::make_unique<knf::OnlineRawAudioSamples>(opts_raw_audio_);
}
private:
std::unique_ptr<knf::OnlineFbank> fbank_;
std::unique_ptr<knf::OnlineMfcc> mfcc_;
std::unique_ptr<knf::OnlineWhisperFbank> whisper_fbank_;
std::unique_ptr<knf::OnlineRawAudioSamples> raw_audio_;
knf::FbankOptions opts_;
knf::RawAudioSamplesOptions opts_raw_audio_;
knf::MfccOptions mfcc_opts_;
FeatureExtractorConfig config_;
mutable std::mutex mutex_;
std::unique_ptr<LinearResample> resampler_;
int32_t last_frame_index_ = 0;
};
FeatureExtractor::FeatureExtractor(const FeatureExtractorConfig &config /*={}*/)
: impl_(std::make_unique<Impl>(config)) {}
FeatureExtractor::~FeatureExtractor() = default;
void FeatureExtractor::AcceptWaveform(int32_t sampling_rate,
const float *waveform, int32_t n) const {
impl_->AcceptWaveform(sampling_rate, waveform, n);
}
void FeatureExtractor::InputFinished() const { impl_->InputFinished(); }
int32_t FeatureExtractor::NumFramesReady() const {
return impl_->NumFramesReady();
}
bool FeatureExtractor::IsLastFrame(int32_t frame) const {
return impl_->IsLastFrame(frame);
}
std::vector<float> FeatureExtractor::GetFrames(int32_t frame_index,
int32_t n) const {
return impl_->GetFrames(frame_index, n);
}
int32_t FeatureExtractor::FeatureDim() const { return impl_->FeatureDim(); }
} // namespace sherpa_onnx