vad-with-non-streaming-asr.py
15.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
#!/usr/bin/env python3
#
# Copyright (c) 2023 Xiaomi Corporation
"""
This file demonstrates how to use sherpa-onnx Python APIs
with VAD and non-streaming ASR models for speech recognition
from a microphone.
Note that you need a non-streaming model for this script.
(1) For paraformer
./python-api-examples/vad-with-non-streaming-asr.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--tokens=/path/to/tokens.txt \
--paraformer=/path/to/paraformer.onnx \
--num-threads=2 \
--decoding-method=greedy_search \
--debug=false \
--sample-rate=16000 \
--feature-dim=80
(2) For transducer models from icefall
./python-api-examples/vad-with-non-streaming-asr.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--tokens=/path/to/tokens.txt \
--encoder=/path/to/encoder.onnx \
--decoder=/path/to/decoder.onnx \
--joiner=/path/to/joiner.onnx \
--num-threads=2 \
--decoding-method=greedy_search \
--debug=false \
--sample-rate=16000 \
--feature-dim=80
(3) For Moonshine models
./python-api-examples/vad-with-non-streaming-asr.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--moonshine-preprocessor=./sherpa-onnx-moonshine-tiny-en-int8/preprocess.onnx \
--moonshine-encoder=./sherpa-onnx-moonshine-tiny-en-int8/encode.int8.onnx \
--moonshine-uncached-decoder=./sherpa-onnx-moonshine-tiny-en-int8/uncached_decode.int8.onnx \
--moonshine-cached-decoder=./sherpa-onnx-moonshine-tiny-en-int8/cached_decode.int8.onnx \
--tokens=./sherpa-onnx-moonshine-tiny-en-int8/tokens.txt \
--num-threads=2
(4) For Whisper models
./python-api-examples/vad-with-non-streaming-asr.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--whisper-encoder=./sherpa-onnx-whisper-base.en/base.en-encoder.int8.onnx \
--whisper-decoder=./sherpa-onnx-whisper-base.en/base.en-decoder.int8.onnx \
--tokens=./sherpa-onnx-whisper-base.en/base.en-tokens.txt \
--whisper-task=transcribe \
--num-threads=2
(5) For SenseVoice CTC models
./python-api-examples/vad-with-non-streaming-asr.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--sense-voice=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.onnx \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt \
--num-threads=2
Please refer to
https://k2-fsa.github.io/sherpa/onnx/index.html
to install sherpa-onnx and to download non-streaming pre-trained models
used in this file.
Please visit
https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
to download silero_vad.onnx
For instance,
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
"""
import argparse
import sys
from pathlib import Path
import numpy as np
try:
import sounddevice as sd
except ImportError:
print("Please install sounddevice first. You can use")
print()
print(" pip install sounddevice")
print()
print("to install it")
sys.exit(-1)
import sherpa_onnx
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--silero-vad-model",
type=str,
required=True,
help="Path to silero_vad.onnx",
)
parser.add_argument(
"--tokens",
type=str,
help="Path to tokens.txt",
)
parser.add_argument(
"--encoder",
default="",
type=str,
help="Path to the transducer encoder model",
)
parser.add_argument(
"--decoder",
default="",
type=str,
help="Path to the transducer decoder model",
)
parser.add_argument(
"--joiner",
default="",
type=str,
help="Path to the transducer joiner model",
)
parser.add_argument(
"--paraformer",
default="",
type=str,
help="Path to the model.onnx from Paraformer",
)
parser.add_argument(
"--sense-voice",
default="",
type=str,
help="Path to the model.onnx from SenseVoice",
)
parser.add_argument(
"--num-threads",
type=int,
default=1,
help="Number of threads for neural network computation",
)
parser.add_argument(
"--whisper-encoder",
default="",
type=str,
help="Path to whisper encoder model",
)
parser.add_argument(
"--whisper-decoder",
default="",
type=str,
help="Path to whisper decoder model",
)
parser.add_argument(
"--whisper-language",
default="",
type=str,
help="""It specifies the spoken language in the input file.
Example values: en, fr, de, zh, jp.
Available languages for multilingual models can be found at
https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10
If not specified, we infer the language from the input audio file.
""",
)
parser.add_argument(
"--whisper-task",
default="transcribe",
choices=["transcribe", "translate"],
type=str,
help="""For multilingual models, if you specify translate, the output
will be in English.
""",
)
parser.add_argument(
"--whisper-tail-paddings",
default=-1,
type=int,
help="""Number of tail padding frames.
We have removed the 30-second constraint from whisper, so you need to
choose the amount of tail padding frames by yourself.
Use -1 to use a default value for tail padding.
""",
)
parser.add_argument(
"--moonshine-preprocessor",
default="",
type=str,
help="Path to moonshine preprocessor model",
)
parser.add_argument(
"--moonshine-encoder",
default="",
type=str,
help="Path to moonshine encoder model",
)
parser.add_argument(
"--moonshine-uncached-decoder",
default="",
type=str,
help="Path to moonshine uncached decoder model",
)
parser.add_argument(
"--moonshine-cached-decoder",
default="",
type=str,
help="Path to moonshine cached decoder model",
)
parser.add_argument(
"--blank-penalty",
type=float,
default=0.0,
help="""
The penalty applied on blank symbol during decoding.
Note: It is a positive value that would be applied to logits like
this `logits[:, 0] -= blank_penalty` (suppose logits.shape is
[batch_size, vocab] and blank id is 0).
""",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Valid values are greedy_search and modified_beam_search.
modified_beam_search is valid only for transducer models.
""",
)
parser.add_argument(
"--debug",
type=bool,
default=False,
help="True to show debug messages when loading modes.",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="""Sample rate of the feature extractor. Must match the one
expected by the model.""",
)
parser.add_argument(
"--feature-dim",
type=int,
default=80,
help="Feature dimension. Must match the one expected by the model",
)
parser.add_argument(
"--hr-dict-dir",
type=str,
default="",
help="If not empty, it is the jieba dict directory for homophone replacer",
)
parser.add_argument(
"--hr-lexicon",
type=str,
default="",
help="If not empty, it is the lexicon.txt for homophone replacer",
)
parser.add_argument(
"--hr-rule-fsts",
type=str,
default="",
help="If not empty, it is the replace.fst for homophone replacer",
)
return parser.parse_args()
def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
)
def create_recognizer(args) -> sherpa_onnx.OfflineRecognizer:
if args.encoder:
assert len(args.paraformer) == 0, args.paraformer
assert len(args.sense_voice) == 0, args.sense_voice
assert len(args.whisper_encoder) == 0, args.whisper_encoder
assert len(args.whisper_decoder) == 0, args.whisper_decoder
assert len(args.moonshine_preprocessor) == 0, args.moonshine_preprocessor
assert len(args.moonshine_encoder) == 0, args.moonshine_encoder
assert (
len(args.moonshine_uncached_decoder) == 0
), args.moonshine_uncached_decoder
assert len(args.moonshine_cached_decoder) == 0, args.moonshine_cached_decoder
assert_file_exists(args.encoder)
assert_file_exists(args.decoder)
assert_file_exists(args.joiner)
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
encoder=args.encoder,
decoder=args.decoder,
joiner=args.joiner,
tokens=args.tokens,
num_threads=args.num_threads,
sample_rate=args.sample_rate,
feature_dim=args.feature_dim,
decoding_method=args.decoding_method,
blank_penalty=args.blank_penalty,
debug=args.debug,
hr_dict_dir=args.hr_dict_dir,
hr_rule_fsts=args.hr_rule_fsts,
hr_lexicon=args.hr_lexicon,
)
elif args.paraformer:
assert len(args.sense_voice) == 0, args.sense_voice
assert len(args.whisper_encoder) == 0, args.whisper_encoder
assert len(args.whisper_decoder) == 0, args.whisper_decoder
assert len(args.moonshine_preprocessor) == 0, args.moonshine_preprocessor
assert len(args.moonshine_encoder) == 0, args.moonshine_encoder
assert (
len(args.moonshine_uncached_decoder) == 0
), args.moonshine_uncached_decoder
assert len(args.moonshine_cached_decoder) == 0, args.moonshine_cached_decoder
assert_file_exists(args.paraformer)
recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
paraformer=args.paraformer,
tokens=args.tokens,
num_threads=args.num_threads,
sample_rate=args.sample_rate,
feature_dim=args.feature_dim,
decoding_method=args.decoding_method,
debug=args.debug,
hr_dict_dir=args.hr_dict_dir,
hr_rule_fsts=args.hr_rule_fsts,
hr_lexicon=args.hr_lexicon,
)
elif args.sense_voice:
assert len(args.whisper_encoder) == 0, args.whisper_encoder
assert len(args.whisper_decoder) == 0, args.whisper_decoder
assert len(args.moonshine_preprocessor) == 0, args.moonshine_preprocessor
assert len(args.moonshine_encoder) == 0, args.moonshine_encoder
assert (
len(args.moonshine_uncached_decoder) == 0
), args.moonshine_uncached_decoder
assert len(args.moonshine_cached_decoder) == 0, args.moonshine_cached_decoder
assert_file_exists(args.sense_voice)
recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice(
model=args.sense_voice,
tokens=args.tokens,
num_threads=args.num_threads,
use_itn=True,
debug=args.debug,
hr_dict_dir=args.hr_dict_dir,
hr_rule_fsts=args.hr_rule_fsts,
hr_lexicon=args.hr_lexicon,
)
elif args.whisper_encoder:
assert_file_exists(args.whisper_encoder)
assert_file_exists(args.whisper_decoder)
assert len(args.moonshine_preprocessor) == 0, args.moonshine_preprocessor
assert len(args.moonshine_encoder) == 0, args.moonshine_encoder
assert (
len(args.moonshine_uncached_decoder) == 0
), args.moonshine_uncached_decoder
assert len(args.moonshine_cached_decoder) == 0, args.moonshine_cached_decoder
recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
encoder=args.whisper_encoder,
decoder=args.whisper_decoder,
tokens=args.tokens,
num_threads=args.num_threads,
decoding_method=args.decoding_method,
debug=args.debug,
language=args.whisper_language,
task=args.whisper_task,
tail_paddings=args.whisper_tail_paddings,
hr_dict_dir=args.hr_dict_dir,
hr_rule_fsts=args.hr_rule_fsts,
hr_lexicon=args.hr_lexicon,
)
elif args.moonshine_preprocessor:
assert_file_exists(args.moonshine_preprocessor)
assert_file_exists(args.moonshine_encoder)
assert_file_exists(args.moonshine_uncached_decoder)
assert_file_exists(args.moonshine_cached_decoder)
recognizer = sherpa_onnx.OfflineRecognizer.from_moonshine(
preprocessor=args.moonshine_preprocessor,
encoder=args.moonshine_encoder,
uncached_decoder=args.moonshine_uncached_decoder,
cached_decoder=args.moonshine_cached_decoder,
tokens=args.tokens,
num_threads=args.num_threads,
decoding_method=args.decoding_method,
debug=args.debug,
hr_dict_dir=args.hr_dict_dir,
hr_rule_fsts=args.hr_rule_fsts,
hr_lexicon=args.hr_lexicon,
)
else:
raise ValueError("Please specify at least one model")
return recognizer
def main():
devices = sd.query_devices()
if len(devices) == 0:
print("No microphone devices found")
sys.exit(0)
print(devices)
# If you want to select a different input device, please use
# sd.default.device[0] = xxx
# where xxx is the device number
default_input_device_idx = sd.default.device[0]
print(f'Use default device: {devices[default_input_device_idx]["name"]}')
args = get_args()
assert_file_exists(args.tokens)
assert_file_exists(args.silero_vad_model)
assert args.num_threads > 0, args.num_threads
assert (
args.sample_rate == 16000
), f"Only sample rate 16000 is supported.Given: {args.sample_rate}"
print("Creating recognizer. Please wait...")
recognizer = create_recognizer(args)
config = sherpa_onnx.VadModelConfig()
config.silero_vad.model = args.silero_vad_model
config.silero_vad.min_silence_duration = 0.25
config.sample_rate = args.sample_rate
window_size = config.silero_vad.window_size
vad = sherpa_onnx.VoiceActivityDetector(config, buffer_size_in_seconds=100)
samples_per_read = int(0.1 * args.sample_rate) # 0.1 second = 100 ms
print("Started! Please speak")
buffer = []
texts = []
with sd.InputStream(channels=1, dtype="float32", samplerate=args.sample_rate) as s:
while True:
samples, _ = s.read(samples_per_read) # a blocking read
samples = samples.reshape(-1)
buffer = np.concatenate([buffer, samples])
while len(buffer) > window_size:
vad.accept_waveform(buffer[:window_size])
buffer = buffer[window_size:]
while not vad.empty():
stream = recognizer.create_stream()
stream.accept_waveform(args.sample_rate, vad.front.samples)
vad.pop()
recognizer.decode_stream(stream)
text = stream.result.text.strip().lower()
if len(text):
idx = len(texts)
texts.append(text)
print(f"{idx}: {text}")
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\nCaught Ctrl + C. Exiting")