sense-voice-2.dart
3.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// Copyright (c) 2024 Xiaomi Corporation
//
// Different from ./sense-voice.dart, this file uses a CircularBuffer
import 'dart:io';
import 'package:args/args.dart';
import 'package:sherpa_onnx/sherpa_onnx.dart' as sherpa_onnx;
import './init.dart';
void main(List<String> arguments) async {
await initSherpaOnnx();
final parser = ArgParser()
..addOption('silero-vad', help: 'Path to silero_vad.onnx')
..addOption('model', help: 'Path to the SenseVoice model')
..addOption('tokens', help: 'Path to tokens.txt')
..addOption('language',
help: 'auto, zh, en, ja, ko, yue, or leave it empty to use auto',
defaultsTo: '')
..addOption('use-itn',
help: 'true to use inverse text normalization', defaultsTo: 'false')
..addOption('input-wav', help: 'Path to input.wav to transcribe');
final res = parser.parse(arguments);
if (res['silero-vad'] == null ||
res['model'] == null ||
res['tokens'] == null ||
res['input-wav'] == null) {
print(parser.usage);
exit(1);
}
// create VAD
final sileroVad = res['silero-vad'] as String;
final sileroVadConfig = sherpa_onnx.SileroVadModelConfig(
model: sileroVad,
minSilenceDuration: 0.25,
minSpeechDuration: 0.5,
);
final vadConfig = sherpa_onnx.VadModelConfig(
sileroVad: sileroVadConfig,
numThreads: 1,
debug: true,
);
final vad = sherpa_onnx.VoiceActivityDetector(
config: vadConfig, bufferSizeInSeconds: 10);
// create SenseVoice
final model = res['model'] as String;
final tokens = res['tokens'] as String;
final inputWav = res['input-wav'] as String;
final language = res['language'] as String;
final useItn = (res['use-itn'] as String).toLowerCase() == 'true';
final senseVoice = sherpa_onnx.OfflineSenseVoiceModelConfig(
model: model, language: language, useInverseTextNormalization: useItn);
final modelConfig = sherpa_onnx.OfflineModelConfig(
senseVoice: senseVoice,
tokens: tokens,
debug: true,
numThreads: 1,
);
final config = sherpa_onnx.OfflineRecognizerConfig(model: modelConfig);
final recognizer = sherpa_onnx.OfflineRecognizer(config);
final waveData = sherpa_onnx.readWave(inputWav);
if (waveData.sampleRate != 16000) {
print('Only 16000 Hz is supported. Given: ${waveData.sampleRate}');
exit(1);
}
final buffer = sherpa_onnx.CircularBuffer(capacity: 30 * 16000);
buffer.push(waveData.samples);
while (buffer.size > vadConfig.sileroVad.windowSize) {
final samples =
buffer.get(startIndex: buffer.head, n: vadConfig.sileroVad.windowSize);
buffer.pop(vadConfig.sileroVad.windowSize);
vad.acceptWaveform(samples);
if (vad.isDetected()) {
while (!vad.isEmpty()) {
final samples = vad.front().samples;
final startTime = vad.front().start.toDouble() / waveData.sampleRate;
final endTime =
startTime + samples.length.toDouble() / waveData.sampleRate;
final stream = recognizer.createStream();
stream.acceptWaveform(
samples: samples, sampleRate: waveData.sampleRate);
recognizer.decode(stream);
final result = recognizer.getResult(stream);
stream.free();
print(
'${startTime.toStringAsPrecision(5)} -- ${endTime.toStringAsPrecision(5)} : ${result.text}');
vad.pop();
}
}
}
vad.flush();
while (!vad.isEmpty()) {
final samples = vad.front().samples;
final startTime = vad.front().start.toDouble() / waveData.sampleRate;
final endTime = startTime + samples.length.toDouble() / waveData.sampleRate;
final stream = recognizer.createStream();
stream.acceptWaveform(samples: samples, sampleRate: waveData.sampleRate);
recognizer.decode(stream);
final result = recognizer.getResult(stream);
stream.free();
print(
'${startTime.toStringAsPrecision(5)} -- ${endTime.toStringAsPrecision(5)} : ${result.text}');
vad.pop();
}
buffer.free();
vad.free();
recognizer.free();
}