my_init.pas
12.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
unit my_init;
{$mode ObjFPC}{$H+}
interface
uses
{$IFDEF UNIX}
cthreads,
cmem,
{$ENDIF}
{$IFDEF HASAMIGA}
athreads,
{$ENDIF}
Classes, SysUtils;
type
TMyInitThread = class(TThread)
private
Status: AnsiString;
ModelDir: AnsiString;
procedure ShowStatus;
protected
procedure Execute; override;
public
Constructor Create(CreateSuspended: Boolean; ModelDirectory: AnsiString);
end;
var
MyInitThread: TMyInitThread;
implementation
uses
unit1, sherpa_onnx;
function CreateVad(VadFilename: AnsiString): TSherpaOnnxVoiceActivityDetector;
var
Config: TSherpaOnnxVadModelConfig;
SampleRate: Integer;
WindowSize: Integer;
begin
Initialize(Config);
SampleRate := 16000; {Please don't change it unless you know the details}
WindowSize := 512; {Please don't change it unless you know the details}
Config.SileroVad.Model := VadFilename;
Config.SileroVad.MinSpeechDuration := 0.25;
Config.SileroVad.MinSilenceDuration := 0.5;
Config.SileroVad.MaxSpeechDuration := 5.0;
Config.SileroVad.Threshold := 0.5;
Config.SileroVad.WindowSize := WindowSize;
Config.NumThreads:= 2;
Config.Debug:= True;
Config.Provider:= 'cpu';
Config.SampleRate := SampleRate;
Result := TSherpaOnnxVoiceActivityDetector.Create(Config, 30);
end;
function CreateOfflineRecognizerTransducer(
Tokens: AnsiString;
Encoder: AnsiString;
Decoder: AnsiString;
Joiner: AnsiString;
ModelType: AnsiString): TSherpaOnnxOfflineRecognizer;
var
Config: TSherpaOnnxOfflineRecognizerConfig;
begin
Initialize(Config);
Config.ModelConfig.Transducer.Encoder := Encoder;
Config.ModelConfig.Transducer.Decoder := Decoder;
Config.ModelConfig.Transducer.Joiner := Joiner;
Config.ModelConfig.ModelType := ModelType;
Config.ModelConfig.Tokens := Tokens;
Config.ModelConfig.Provider := 'cpu';
Config.ModelConfig.NumThreads := 2;
Config.ModelConfig.Debug := False;
Result := TSherpaOnnxOfflineRecognizer.Create(Config);
end;
function CreateOfflineRecognizerTeleSpeech(
Tokens: AnsiString;
TeleSpeech: AnsiString): TSherpaOnnxOfflineRecognizer;
var
Config: TSherpaOnnxOfflineRecognizerConfig;
begin
Initialize(Config);
Config.ModelConfig.TeleSpeechCtc := TeleSpeech;
Config.ModelConfig.Tokens := Tokens;
Config.ModelConfig.Provider := 'cpu';
Config.ModelConfig.NumThreads := 2;
Config.ModelConfig.Debug := False;
Result := TSherpaOnnxOfflineRecognizer.Create(Config);
end;
function CreateOfflineRecognizerParaformer(
Tokens: AnsiString;
Paraformer: AnsiString): TSherpaOnnxOfflineRecognizer;
var
Config: TSherpaOnnxOfflineRecognizerConfig;
begin
Initialize(Config);
Config.ModelConfig.Paraformer.Model := Paraformer;
Config.ModelConfig.Tokens := Tokens;
Config.ModelConfig.Provider := 'cpu';
Config.ModelConfig.NumThreads := 2;
Config.ModelConfig.Debug := False;
Result := TSherpaOnnxOfflineRecognizer.Create(Config);
end;
function CreateOfflineRecognizerSenseVoice(
Tokens: AnsiString;
SenseVoice: AnsiString): TSherpaOnnxOfflineRecognizer;
var
Config: TSherpaOnnxOfflineRecognizerConfig;
begin
Initialize(Config);
Config.ModelConfig.SenseVoice.Model := SenseVoice;
Config.ModelConfig.SenseVoice.Language := 'auto';
Config.ModelConfig.SenseVoice.UseItn := True;
Config.ModelConfig.Tokens := Tokens;
Config.ModelConfig.Provider := 'cpu';
Config.ModelConfig.NumThreads := 2;
Config.ModelConfig.Debug := False;
Result := TSherpaOnnxOfflineRecognizer.Create(Config);
end;
function CreateOfflineRecognizerWhisper(
Tokens: AnsiString;
WhisperEncoder: AnsiString;
WhisperDecoder: AnsiString): TSherpaOnnxOfflineRecognizer;
var
Config: TSherpaOnnxOfflineRecognizerConfig;
begin
Initialize(Config);
Config.ModelConfig.Whisper.Encoder := WhisperEncoder;
Config.ModelConfig.Whisper.Decoder := WhisperDecoder;
Config.ModelConfig.Tokens := Tokens;
Config.ModelConfig.Provider := 'cpu';
Config.ModelConfig.NumThreads := 2;
Config.ModelConfig.Debug := False;
Result := TSherpaOnnxOfflineRecognizer.Create(Config);
end;
function CreateOfflineRecognizerMoonshine(
Tokens: AnsiString;
Preprocessor: AnsiString;
Encoder: AnsiString;
UncachedDecoder: AnsiString;
CachedDecoder: AnsiString): TSherpaOnnxOfflineRecognizer;
var
Config: TSherpaOnnxOfflineRecognizerConfig;
begin
Initialize(Config);
Config.ModelConfig.Moonshine.Preprocessor := Preprocessor;
Config.ModelConfig.Moonshine.Encoder := Encoder;
Config.ModelConfig.Moonshine.UncachedDecoder := UncachedDecoder;
Config.ModelConfig.Moonshine.CachedDecoder := CachedDecoder;
Config.ModelConfig.Tokens := Tokens;
Config.ModelConfig.Provider := 'cpu';
Config.ModelConfig.NumThreads := 2;
Config.ModelConfig.Debug := False;
Result := TSherpaOnnxOfflineRecognizer.Create(Config);
end;
constructor TMyInitThread.Create(CreateSuspended : boolean; ModelDirectory: AnsiString);
begin
inherited Create(CreateSuspended);
ModelDir := ModelDirectory;
FreeOnTerminate := True;
end;
procedure TMyInitThread.ShowStatus;
begin
Form1.UpdateInitStatus(Status);
end;
procedure TMyInitThread.Execute;
var
Msg: AnsiString;
VadFilename: AnsiString;
Tokens: AnsiString;
WhisperEncoder: AnsiString;
WhisperDecoder: AnsiString;
SenseVoice: AnsiString;
Paraformer: AnsiString;
TeleSpeech: AnsiString;
TransducerEncoder: AnsiString; // from icefall
TransducerDecoder: AnsiString;
TransducerJoiner: AnsiString;
NeMoTransducerEncoder: AnsiString;
NeMoTransducerDecoder: AnsiString;
NeMoTransducerJoiner: AnsiString;
MoonshinePreprocessor: AnsiString;
MoonshineEncoder: AnsiString;
MoonshineUncachedDecoder: AnsiString;
MoonshineCachedDecoder: AnsiString;
begin
VadFilename := ModelDir + 'silero_vad.onnx';
Tokens := ModelDir + 'tokens.txt';
{
Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/whisper/export-onnx.html#available-models
for a list of whisper models.
In the code, we use the normalized filename whisper-encoder.onnx, whisper-decoder.onnx, and tokens.txt
You need to rename the existing model files.
For instance, if you use sherpa-onnx-whisper-tiny.en, you have to do
mv tiny.en-tokens.txt tokens.txt
mv tiny.en-encoder.onnx whisper-encoder.onnx
mv tiny.en-decoder.onnx whisper-decoder.onnx
// or use the int8.onnx
mv tiny.en-encoder.int8.onnx whisper-encoder.onnx
mv tiny.en-decoder.int8.onnx whisper-decoder.onnx
}
WhisperEncoder := ModelDir + 'whisper-encoder.onnx';
WhisperDecoder := ModelDir + 'whisper-decoder.onnx';
{
Please refer to
https://k2-fsa.github.io/sherpa/onnx/sense-voice/pretrained.html#pre-trained-models
to download models for SenseVoice.
In the code, we use the normalized model name sense-voice.onnx. You have
to rename the downloaded model files.
For example, you need to use
mv model.onnx sense-voice.onnx
// or use the int8.onnx
mv model.int8.onnx sense-voice.onnx
}
SenseVoice := ModelDir + 'sense-voice.onnx';
{
Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-paraformer/index.html
to download paraformer models.
Note that you have to rename model.onnx or model.int8.onnx to paraformer.onnx.
An example is given below for the rename:
cp model.onnx paraformer.onnx
// or use int8.onnx
cp model.int8.onnx paraformer.onnx
}
Paraformer := ModelDir + 'paraformer.onnx';
{
please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/telespeech/models.html
to download TeleSpeech models.
Note that you have to rename model files after downloading. The following
is an example
mv model.onnx telespeech.onnx
// or to use int8.onnx
mv model.int8.onnx telespeech.onnx
}
TeleSpeech := ModelDir + 'telespeech.onnx';
{
Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
to download an icefall offline transducer model. Note that you need to rename the
model files to transducer-encoder.onnx, transducer-decoder.onnx, and
transducer-joiner.onnx
}
TransducerEncoder := ModelDir + 'transducer-encoder.onnx';
TransducerDecoder := ModelDir + 'transducer-decoder.onnx';
TransducerJoiner := ModelDir + 'transducer-joiner.onnx';
{
Please visit
https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
to donwload a NeMo transducer model.
}
NeMoTransducerEncoder := ModelDir + 'nemo-transducer-encoder.onnx';
NeMoTransducerDecoder := ModelDir + 'nemo-transducer-decoder.onnx';
NeMoTransducerJoiner := ModelDir + 'nemo-transducer-joiner.onnx';
{
Please Visit
https://k2-fsa.github.io/sherpa/onnx/moonshine/models.html
to download a Moonshine model.
Note that you have to rename model files after downloading. The following
is an example.
mv preprocess.onnx moonshine-preprocessor.onnx
mv encode.int8.onnx moonshine-encoder.onnx
mv uncached_decode.int8.onnx moonshine-uncached-decoder.onnx
mv cached_decode.int8.onnx moonshine-cached-decoder.onnx
}
MoonshinePreprocessor := ModelDir + 'moonshine-preprocessor.onnx';
MoonshineEncoder := ModelDir + 'moonshine-encoder.onnx';
MoonshineUncachedDecoder := ModelDir + 'moonshine-uncached-decoder.onnx';
MoonshineCachedDecoder := ModelDir + 'moonshine-cached-decoder.onnx';
if not FileExists(VadFilename) then
begin
Status := VadFilename + ' does not exist! Please download it from' +
sLineBreak + 'https://github.com/k2-fsa/sherpa-onnx/tree/asr-models';
Synchronize(@ShowStatus);
Exit;
end;
if Form1.Vad = nil then
begin
Form1.Vad := CreateVad(VadFilename);
end;
if not FileExists(Tokens) then
begin
Status := Tokens + ' not found. Please download a non-streaming ASR model first!';
Synchronize(@ShowStatus);
Exit;
end;
if FileExists(WhisperEncoder) and FileExists(WhisperDecoder) then
begin
Form1.OfflineRecognizer := CreateOfflineRecognizerWhisper(Tokens, WhisperEncoder, WhisperDecoder);
Msg := 'Whisper';
end
else if FileExists(SenseVoice) then
begin
Form1.OfflineRecognizer := CreateOfflineRecognizerSenseVoice(Tokens, SenseVoice);
Msg := 'SenseVoice';
end
else if FileExists(Paraformer) then
begin
Form1.OfflineRecognizer := CreateOfflineRecognizerParaformer(Tokens, Paraformer);
Msg := 'Paraformer';
end
else if FileExists(TeleSpeech) then
begin
Form1.OfflineRecognizer := CreateOfflineRecognizerTeleSpeech(Tokens, TeleSpeech);
Msg := 'TeleSpeech';
end
else if FileExists(TransducerEncoder) and FileExists(TransducerDecoder) and FileExists(TransducerJoiner) then
begin
Form1.OfflineRecognizer := CreateOfflineRecognizerTransducer(Tokens,
TransducerEncoder, TransducerDecoder, TransducerJoiner, 'transducer');
Msg := 'Zipformer transducer';
end
else if FileExists(NeMoTransducerEncoder) and FileExists(NeMoTransducerDecoder) and FileExists(NeMoTransducerJoiner) then
begin
Form1.OfflineRecognizer := CreateOfflineRecognizerTransducer(Tokens,
NeMoTransducerEncoder, NeMoTransducerDecoder, NeMoTransducerJoiner, 'nemo_transducer');
Msg := 'NeMo transducer';
end
else if FileExists(MoonshinePreprocessor) and FileExists(MoonshineEncoder) and FileExists(MoonshineUncachedDecoder) and FileExists(MoonshineCachedDecoder) then
begin
Form1.OfflineRecognizer := CreateOfflineRecognizerMoonshine(Tokens,
MoonshinePreprocessor, MoonshineEncoder, MoonshineUncachedDecoder,
MoonshineCachedDecoder);
Msg := 'Moonshine';
end
else
begin
Status := 'Please download at least one non-streaming speech recognition model first.';
Synchronize(@ShowStatus);
Exit;
end;
Status := 'Congratulations! The ' + Msg + ' model is initialized succesfully!';
Synchronize(@ShowStatus);
end;
end.