session.cc
7.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// sherpa-onnx/csrc/session.cc
//
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/session.h"
#include <algorithm>
#include <string>
#include <utility>
#include <vector>
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/provider.h"
#if defined(__APPLE__)
#include "coreml_provider_factory.h" // NOLINT
#endif
#if __ANDROID_API__ >= 27
#include "nnapi_provider_factory.h" // NOLINT
#endif
namespace sherpa_onnx {
static void OrtStatusFailure(OrtStatus *status, const char *s) {
const auto &api = Ort::GetApi();
const char *msg = api.GetErrorMessage(status);
SHERPA_ONNX_LOGE(
"Failed to enable TensorRT : %s."
"Available providers: %s. Fallback to cuda",
msg, s);
api.ReleaseStatus(status);
}
static Ort::SessionOptions GetSessionOptionsImpl(int32_t num_threads,
std::string provider_str) {
Provider p = StringToProvider(std::move(provider_str));
Ort::SessionOptions sess_opts;
sess_opts.SetIntraOpNumThreads(num_threads);
sess_opts.SetInterOpNumThreads(num_threads);
std::vector<std::string> available_providers = Ort::GetAvailableProviders();
std::ostringstream os;
for (const auto &ep : available_providers) {
os << ep << ", ";
}
// Other possible options
// sess_opts.SetGraphOptimizationLevel(ORT_ENABLE_EXTENDED);
// sess_opts.SetLogSeverityLevel(ORT_LOGGING_LEVEL_VERBOSE);
// sess_opts.EnableProfiling("profile");
switch (p) {
case Provider::kCPU:
break; // nothing to do for the CPU provider
case Provider::kXnnpack: {
if (std::find(available_providers.begin(), available_providers.end(),
"XnnpackExecutionProvider") != available_providers.end()) {
sess_opts.AppendExecutionProvider("XNNPACK");
} else {
SHERPA_ONNX_LOGE("Available providers: %s. Fallback to cpu!",
os.str().c_str());
}
break;
}
case Provider::kTRT: {
struct TrtPairs {
const char *op_keys;
const char *op_values;
};
std::vector<TrtPairs> trt_options = {
{"device_id", "0"},
{"trt_max_workspace_size", "2147483648"},
{"trt_max_partition_iterations", "10"},
{"trt_min_subgraph_size", "5"},
{"trt_fp16_enable", "0"},
{"trt_detailed_build_log", "0"},
{"trt_engine_cache_enable", "1"},
{"trt_engine_cache_path", "."},
{"trt_timing_cache_enable", "1"},
{"trt_timing_cache_path", "."}};
// ToDo : Trt configs
// "trt_int8_enable"
// "trt_int8_use_native_calibration_table"
// "trt_dump_subgraphs"
std::vector<const char *> option_keys, option_values;
for (const TrtPairs &pair : trt_options) {
option_keys.emplace_back(pair.op_keys);
option_values.emplace_back(pair.op_values);
}
std::vector<std::string> available_providers =
Ort::GetAvailableProviders();
if (std::find(available_providers.begin(), available_providers.end(),
"TensorrtExecutionProvider") != available_providers.end()) {
const auto &api = Ort::GetApi();
OrtTensorRTProviderOptionsV2 *tensorrt_options = nullptr;
OrtStatus *statusC =
api.CreateTensorRTProviderOptions(&tensorrt_options);
OrtStatus *statusU = api.UpdateTensorRTProviderOptions(
tensorrt_options, option_keys.data(), option_values.data(),
option_keys.size());
sess_opts.AppendExecutionProvider_TensorRT_V2(*tensorrt_options);
if (statusC) {
OrtStatusFailure(statusC, os.str().c_str());
}
if (statusU) {
OrtStatusFailure(statusU, os.str().c_str());
}
api.ReleaseTensorRTProviderOptions(tensorrt_options);
}
// break; is omitted here intentionally so that
// if TRT not available, CUDA will be used
}
case Provider::kCUDA: {
if (std::find(available_providers.begin(), available_providers.end(),
"CUDAExecutionProvider") != available_providers.end()) {
// The CUDA provider is available, proceed with setting the options
OrtCUDAProviderOptions options;
options.device_id = 0;
// Default OrtCudnnConvAlgoSearchExhaustive is extremely slow
options.cudnn_conv_algo_search = OrtCudnnConvAlgoSearchHeuristic;
// set more options on need
sess_opts.AppendExecutionProvider_CUDA(options);
} else {
SHERPA_ONNX_LOGE(
"Please compile with -DSHERPA_ONNX_ENABLE_GPU=ON. Available "
"providers: %s. Fallback to cpu!",
os.str().c_str());
}
break;
}
case Provider::kCoreML: {
#if defined(__APPLE__)
uint32_t coreml_flags = 0;
(void)OrtSessionOptionsAppendExecutionProvider_CoreML(sess_opts,
coreml_flags);
#else
SHERPA_ONNX_LOGE("CoreML is for Apple only. Fallback to cpu!");
#endif
break;
}
case Provider::kNNAPI: {
#if __ANDROID_API__ >= 27
SHERPA_ONNX_LOGE("Current API level %d ", (int32_t)__ANDROID_API__);
// Please see
// https://onnxruntime.ai/docs/execution-providers/NNAPI-ExecutionProvider.html#usage
// to enable different flags
uint32_t nnapi_flags = 0;
// nnapi_flags |= NNAPI_FLAG_USE_FP16;
// nnapi_flags |= NNAPI_FLAG_CPU_DISABLED;
OrtStatus *status = OrtSessionOptionsAppendExecutionProvider_Nnapi(
sess_opts, nnapi_flags);
if (status) {
const auto &api = Ort::GetApi();
const char *msg = api.GetErrorMessage(status);
SHERPA_ONNX_LOGE(
"Failed to enable NNAPI: %s. Available providers: %s. Fallback to "
"cpu",
msg, os.str().c_str());
api.ReleaseStatus(status);
} else {
SHERPA_ONNX_LOGE("Use nnapi");
}
#elif defined(__ANDROID_API__)
SHERPA_ONNX_LOGE(
"Android NNAPI requires API level >= 27. Current API level %d "
"Fallback to cpu!",
(int32_t)__ANDROID_API__);
#else
SHERPA_ONNX_LOGE("NNAPI is for Android only. Fallback to cpu");
#endif
break;
}
}
return sess_opts;
}
Ort::SessionOptions GetSessionOptions(const OnlineModelConfig &config) {
return GetSessionOptionsImpl(config.num_threads, config.provider);
}
Ort::SessionOptions GetSessionOptions(const OfflineModelConfig &config) {
return GetSessionOptionsImpl(config.num_threads, config.provider);
}
Ort::SessionOptions GetSessionOptions(const OfflineLMConfig &config) {
return GetSessionOptionsImpl(config.lm_num_threads, config.lm_provider);
}
Ort::SessionOptions GetSessionOptions(const OnlineLMConfig &config) {
return GetSessionOptionsImpl(config.lm_num_threads, config.lm_provider);
}
Ort::SessionOptions GetSessionOptions(const VadModelConfig &config) {
return GetSessionOptionsImpl(config.num_threads, config.provider);
}
#if SHERPA_ONNX_ENABLE_TTS
Ort::SessionOptions GetSessionOptions(const OfflineTtsModelConfig &config) {
return GetSessionOptionsImpl(config.num_threads, config.provider);
}
#endif
Ort::SessionOptions GetSessionOptions(
const SpeakerEmbeddingExtractorConfig &config) {
return GetSessionOptionsImpl(config.num_threads, config.provider);
}
Ort::SessionOptions GetSessionOptions(
const SpokenLanguageIdentificationConfig &config) {
return GetSessionOptionsImpl(config.num_threads, config.provider);
}
Ort::SessionOptions GetSessionOptions(const AudioTaggingModelConfig &config) {
return GetSessionOptionsImpl(config.num_threads, config.provider);
}
Ort::SessionOptions GetSessionOptions(
const OfflinePunctuationModelConfig &config) {
return GetSessionOptionsImpl(config.num_threads, config.provider);
}
} // namespace sherpa_onnx