online-zipformer-ctc-hlg-decode-file.py
4.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python3
# This file shows how to use a streaming zipformer CTC model and an HLG
# graph for decoding.
#
# We use the following model as an example
#
"""
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-streaming-zipformer-ctc-small-2024-03-18.tar.bz2
tar xvf sherpa-onnx-streaming-zipformer-ctc-small-2024-03-18.tar.bz2
rm sherpa-onnx-streaming-zipformer-ctc-small-2024-03-18.tar.bz2
python3 ./python-api-examples/online-zipformer-ctc-hlg-decode-file.py \
--tokens ./sherpa-onnx-streaming-zipformer-ctc-small-2024-03-18/tokens.txt \
--graph ./sherpa-onnx-streaming-zipformer-ctc-small-2024-03-18/HLG.fst \
--model ./sherpa-onnx-streaming-zipformer-ctc-small-2024-03-18/ctc-epoch-30-avg-3-chunk-16-left-128.int8.onnx \
./sherpa-onnx-streaming-zipformer-ctc-small-2024-03-18/test_wavs/0.wav
"""
# (The above model is from https://github.com/k2-fsa/icefall/pull/1557)
import argparse
import time
import wave
from pathlib import Path
from typing import List, Tuple
import numpy as np
import sherpa_onnx
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--tokens",
type=str,
required=True,
help="Path to tokens.txt",
)
parser.add_argument(
"--model",
type=str,
required=True,
help="Path to the ONNX model",
)
parser.add_argument(
"--graph",
type=str,
required=True,
help="Path to H.fst, HL.fst, or HLG.fst",
)
parser.add_argument(
"--num-threads",
type=int,
default=1,
help="Number of threads for neural network computation",
)
parser.add_argument(
"--provider",
type=str,
default="cpu",
help="Valid values: cpu, cuda, coreml",
)
parser.add_argument(
"--debug",
type=int,
default=0,
help="Valid values: 1, 0",
)
parser.add_argument(
"sound_file",
type=str,
help="The input sound file to decode. It must be of WAVE"
"format with a single channel, and each sample has 16-bit, "
"i.e., int16_t. "
"The sample rate of the file can be arbitrary and does not need to "
"be 16 kHz",
)
return parser.parse_args()
def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
)
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
"""
Args:
wave_filename:
Path to a wave file. It should be single channel and each sample should
be 16-bit. Its sample rate does not need to be 16kHz.
Returns:
Return a tuple containing:
- A 1-D array of dtype np.float32 containing the samples, which are
normalized to the range [-1, 1].
- sample rate of the wave file
"""
with wave.open(wave_filename) as f:
assert f.getnchannels() == 1, f.getnchannels()
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes
num_samples = f.getnframes()
samples = f.readframes(num_samples)
samples_int16 = np.frombuffer(samples, dtype=np.int16)
samples_float32 = samples_int16.astype(np.float32)
samples_float32 = samples_float32 / 32768
return samples_float32, f.getframerate()
def main():
args = get_args()
print(vars(args))
assert_file_exists(args.tokens)
assert_file_exists(args.graph)
assert_file_exists(args.model)
recognizer = sherpa_onnx.OnlineRecognizer.from_zipformer2_ctc(
tokens=args.tokens,
model=args.model,
num_threads=args.num_threads,
provider=args.provider,
sample_rate=16000,
feature_dim=80,
ctc_graph=args.graph,
)
wave_filename = args.sound_file
assert_file_exists(wave_filename)
samples, sample_rate = read_wave(wave_filename)
duration = len(samples) / sample_rate
print("Started")
start_time = time.time()
s = recognizer.create_stream()
s.accept_waveform(sample_rate, samples)
tail_paddings = np.zeros(int(0.66 * sample_rate), dtype=np.float32)
s.accept_waveform(sample_rate, tail_paddings)
s.input_finished()
while recognizer.is_ready(s):
recognizer.decode_stream(s)
result = recognizer.get_result(s).lower()
end_time = time.time()
elapsed_seconds = end_time - start_time
rtf = elapsed_seconds / duration
print(f"num_threads: {args.num_threads}")
print(f"Wave duration: {duration:.3f} s")
print(f"Elapsed time: {elapsed_seconds:.3f} s")
print(f"Real time factor (RTF): {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f}")
print(result)
if __name__ == "__main__":
main()