simulate-streaming-sense-voice-microphone.py
6.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#!/usr/bin/env python3
#
# Copyright (c) 2025 Xiaomi Corporation
"""
This file demonstrates how to use sherpa-onnx Python APIs
with VAD and non-streaming SenseVoice for real-time speech recognition
from a microphone.
Usage:
wget https://github.com/snakers4/silero-vad/raw/master/src/silero_vad/data/silero_vad.onnx
./python-api-examples/simulate-streaming-sense-voice-microphone.py \
--silero-vad-model=./silero_vad.onnx \
--sense-voice=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.onnx \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt
"""
import argparse
import queue
import sys
import threading
import time
from pathlib import Path
import numpy as np
try:
import sounddevice as sd
except ImportError:
print("Please install sounddevice first. You can use")
print()
print(" pip install sounddevice")
print()
print("to install it")
sys.exit(-1)
import sherpa_onnx
killed = False
recording_thread = None
sample_rate = 16000 # Please don't change it
# buffer saves audio samples to be played
samples_queue = queue.Queue()
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--silero-vad-model",
type=str,
required=True,
help="Path to silero_vad.onnx",
)
parser.add_argument(
"--tokens",
type=str,
help="Path to tokens.txt",
)
parser.add_argument(
"--sense-voice",
default="",
type=str,
help="Path to the model.onnx from SenseVoice",
)
parser.add_argument(
"--num-threads",
type=int,
default=2,
help="Number of threads for neural network computation",
)
parser.add_argument(
"--hr-dict-dir",
type=str,
default="",
help="If not empty, it is the jieba dict directory for homophone replacer",
)
parser.add_argument(
"--hr-lexicon",
type=str,
default="",
help="If not empty, it is the lexicon.txt for homophone replacer",
)
parser.add_argument(
"--hr-rule-fsts",
type=str,
default="",
help="If not empty, it is the replace.fst for homophone replacer",
)
return parser.parse_args()
def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
)
def create_recognizer(args) -> sherpa_onnx.OfflineRecognizer:
assert_file_exists(args.sense_voice)
recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice(
model=args.sense_voice,
tokens=args.tokens,
num_threads=args.num_threads,
use_itn=False,
debug=False,
hr_dict_dir=args.hr_dict_dir,
hr_rule_fsts=args.hr_rule_fsts,
hr_lexicon=args.hr_lexicon,
)
return recognizer
def start_recording():
# You can use any value you like for samples_per_read
samples_per_read = int(0.1 * sample_rate) # 0.1 second = 100 ms
with sd.InputStream(channels=1, dtype="float32", samplerate=sample_rate) as s:
while not killed:
samples, _ = s.read(samples_per_read) # a blocking read
samples = samples.reshape(-1)
samples = np.copy(samples)
samples_queue.put(samples)
def main():
devices = sd.query_devices()
if len(devices) == 0:
print("No microphone devices found")
sys.exit(0)
print(devices)
# If you want to select a different input device, please use
# sd.default.device[0] = xxx
# where xxx is the device number
default_input_device_idx = sd.default.device[0]
print(f'Use default device: {devices[default_input_device_idx]["name"]}')
args = get_args()
assert_file_exists(args.tokens)
assert_file_exists(args.silero_vad_model)
assert args.num_threads > 0, args.num_threads
print("Creating recognizer. Please wait...")
recognizer = create_recognizer(args)
config = sherpa_onnx.VadModelConfig()
config.silero_vad.model = args.silero_vad_model
config.silero_vad.threshold = 0.5
config.silero_vad.min_silence_duration = 0.1 # seconds
config.silero_vad.min_speech_duration = 0.25 # seconds
# If the current segment is larger than this value, then it increases
# the threshold to 0.9 internally. After detecting this segment,
# it resets the threshold to its original value.
config.silero_vad.max_speech_duration = 8 # seconds
config.sample_rate = sample_rate
window_size = config.silero_vad.window_size
vad = sherpa_onnx.VoiceActivityDetector(config, buffer_size_in_seconds=100)
print("Started! Please speak")
buffer = []
global recording_thread
recording_thread = threading.Thread(target=start_recording)
recording_thread.start()
display = sherpa_onnx.Display()
started = False
started_time = None
offset = 0
while not killed:
samples = samples_queue.get() # a blocking read
buffer = np.concatenate([buffer, samples])
while offset + window_size < len(buffer):
vad.accept_waveform(buffer[offset : offset + window_size])
if not started and vad.is_speech_detected():
started = True
started_time = time.time()
offset += window_size
if not started:
if len(buffer) > 10 * window_size:
offset -= len(buffer) - 10 * window_size
buffer = buffer[-10 * window_size :]
if started and time.time() - started_time > 0.2:
stream = recognizer.create_stream()
stream.accept_waveform(sample_rate, buffer)
recognizer.decode_stream(stream)
text = stream.result.text.strip()
if text:
display.update_text(text)
display.display()
started_time = time.time()
while not vad.empty():
# In general, this while loop is executed only once
stream = recognizer.create_stream()
stream.accept_waveform(sample_rate, vad.front.samples)
vad.pop()
recognizer.decode_stream(stream)
text = stream.result.text.strip()
display.update_text(text)
buffer = []
offset = 0
started = False
started_time = None
display.finalize_current_sentence()
display.display()
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
killed = True
if recording_thread:
recording_thread.join()
print("\nCaught Ctrl + C. Exiting")