keyword-spotter-from-microphone.py
5.0 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python3
# Real-time keyword spotting from a microphone with sherpa-onnx Python API
#
# Please refer to
# https://k2-fsa.github.io/sherpa/onnx/kws/pretrained_models/index.html
# to download pre-trained models
import argparse
import sys
from pathlib import Path
from typing import List
try:
import sounddevice as sd
except ImportError:
print("Please install sounddevice first. You can use")
print()
print(" pip install sounddevice")
print()
print("to install it")
sys.exit(-1)
import sherpa_onnx
def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/kws/pretrained_models/index.html to download it"
)
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--tokens",
type=str,
help="Path to tokens.txt",
)
parser.add_argument(
"--encoder",
type=str,
help="Path to the transducer encoder model",
)
parser.add_argument(
"--decoder",
type=str,
help="Path to the transducer decoder model",
)
parser.add_argument(
"--joiner",
type=str,
help="Path to the transducer joiner model",
)
parser.add_argument(
"--num-threads",
type=int,
default=1,
help="Number of threads for neural network computation",
)
parser.add_argument(
"--provider",
type=str,
default="cpu",
help="Valid values: cpu, cuda, coreml",
)
parser.add_argument(
"--max-active-paths",
type=int,
default=4,
help="""
It specifies number of active paths to keep during decoding.
""",
)
parser.add_argument(
"--num-trailing-blanks",
type=int,
default=1,
help="""The number of trailing blanks a keyword should be followed. Setting
to a larger value (e.g. 8) when your keywords has overlapping tokens
between each other.
""",
)
parser.add_argument(
"--keywords-file",
type=str,
help="""
The file containing keywords, one words/phrases per line, and for each
phrase the bpe/cjkchar/pinyin are separated by a space. For example:
▁HE LL O ▁WORLD
x iǎo ài t óng x ué
""",
)
parser.add_argument(
"--keywords-score",
type=float,
default=1.0,
help="""
The boosting score of each token for keywords. The larger the easier to
survive beam search.
""",
)
parser.add_argument(
"--keywords-threshold",
type=float,
default=0.25,
help="""
The trigger threshold (i.e. probability) of the keyword. The larger the
harder to trigger.
""",
)
return parser.parse_args()
def main():
args = get_args()
devices = sd.query_devices()
if len(devices) == 0:
print("No microphone devices found")
sys.exit(0)
print(devices)
default_input_device_idx = sd.default.device[0]
print(f'Use default device: {devices[default_input_device_idx]["name"]}')
assert_file_exists(args.tokens)
assert_file_exists(args.encoder)
assert_file_exists(args.decoder)
assert_file_exists(args.joiner)
assert Path(
args.keywords_file
).is_file(), (
f"keywords_file : {args.keywords_file} not exist, please provide a valid path."
)
keyword_spotter = sherpa_onnx.KeywordSpotter(
tokens=args.tokens,
encoder=args.encoder,
decoder=args.decoder,
joiner=args.joiner,
num_threads=args.num_threads,
max_active_paths=args.max_active_paths,
keywords_file=args.keywords_file,
keywords_score=args.keywords_score,
keywords_threshold=args.keywords_threshold,
num_trailing_blanks=args.num_trailing_blanks,
provider=args.provider,
)
print("Started! Please speak")
idx = 0
sample_rate = 16000
samples_per_read = int(0.1 * sample_rate) # 0.1 second = 100 ms
stream = keyword_spotter.create_stream()
with sd.InputStream(channels=1, dtype="float32", samplerate=sample_rate) as s:
while True:
samples, _ = s.read(samples_per_read) # a blocking read
samples = samples.reshape(-1)
stream.accept_waveform(sample_rate, samples)
while keyword_spotter.is_ready(stream):
keyword_spotter.decode_stream(stream)
result = keyword_spotter.get_result(stream)
if result:
print(f"{idx}: {result }")
idx += 1
# Remember to reset stream right after detecting a keyword
keyword_spotter.reset_stream(stream)
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\nCaught Ctrl + C. Exiting")