test.py
6.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
"""
female (7)
'af', 'af_bella', 'af_nicole','af_sarah', 'af_sky',
'bf_emma', 'bf_isabella',
male (4)
'am_adam', 'am_michael', 'bm_george', 'bm_lewis'
"""
import argparse
import time
from pathlib import Path
from typing import Dict, List
import numpy as np
try:
from piper_phonemize import phonemize_espeak
except Exception as ex:
raise RuntimeError(
f"{ex}\nPlease run\n"
"pip install piper_phonemize -f https://k2-fsa.github.io/icefall/piper_phonemize.html"
)
import onnxruntime as ort
import soundfile as sf
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
required=True,
help="Path to the model",
)
parser.add_argument(
"--voices-bin",
type=str,
required=True,
help="Path to the voices.bin",
)
parser.add_argument(
"--tokens",
type=str,
required=True,
help="Path to tokens.txt",
)
return parser.parse_args()
def show(filename):
session_opts = ort.SessionOptions()
session_opts.log_severity_level = 3
sess = ort.InferenceSession(filename, session_opts)
for i in sess.get_inputs():
print(i)
print("-----")
for i in sess.get_outputs():
print(i)
# NodeArg(name='tokens', type='tensor(int64)', shape=[1, 'tokens1'])
# NodeArg(name='style', type='tensor(float)', shape=[1, 256])
# NodeArg(name='speed', type='tensor(float)', shape=[1])
# -----
# NodeArg(name='audio', type='tensor(float)', shape=['audio0'])
def load_tokens(filename: str) -> Dict[str, int]:
ans = dict()
with open(filename, encoding="utf-8") as f:
for line in f:
fields = line.strip().split()
if len(fields) == 2:
token, idx = fields
ans[token] = int(idx)
else:
assert len(fields) == 1, (len(fields), line)
ans[" "] = int(fields[0])
return ans
def load_voices(speaker_names: List[str], dim: List[int], voices_bin: str):
embedding = (
np.fromfile(voices_bin, dtype="uint8")
.view(np.float32)
.reshape(len(speaker_names), *dim)
)
print("embedding.shape", embedding.shape)
ans = dict()
for i in range(len(speaker_names)):
ans[speaker_names[i]] = embedding[i]
return ans
class OnnxModel:
def __init__(self, model_filename: str, voices_bin: str, tokens: str):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
self.model = ort.InferenceSession(
model_filename,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
self.token2id = load_tokens(tokens)
meta = self.model.get_modelmeta().custom_metadata_map
print(meta)
dim = list(map(int, meta["style_dim"].split(",")))
speaker_names = meta["speaker_names"].split(",")
self.voices = load_voices(
speaker_names=speaker_names, dim=dim, voices_bin=voices_bin
)
self.sample_rate = int(meta["sample_rate"])
print(list(self.voices.keys()))
# ['af', 'af_bella', 'af_nicole', 'af_sarah', 'af_sky', 'am_adam',
# 'am_michael', 'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis']
# af -> (511, 1, 256)
self.max_len = self.voices[next(iter(self.voices))].shape[0] - 1
def __call__(self, text: str, voice):
tokens = phonemize_espeak(text, "en-us")
# tokens is List[List[str]]
# Each sentence is a List[str]
# len(tokens) == number of sentences
tokens = sum(tokens, []) # flatten
tokens = "".join(tokens)
tokens = tokens.replace("kəkˈoːɹoʊ", "kˈoʊkəɹoʊ").replace(
"kəkˈɔːɹəʊ", "kˈəʊkəɹəʊ"
)
tokens = list(tokens)
token_ids = [self.token2id[i] for i in tokens]
token_ids = token_ids[: self.max_len]
style = self.voices[voice][len(token_ids)]
token_ids = [0, *token_ids, 0]
token_ids = np.array([token_ids], dtype=np.int64)
speed = np.array([1.0], dtype=np.float32)
audio = self.model.run(
[
self.model.get_outputs()[0].name,
],
{
self.model.get_inputs()[0].name: token_ids,
self.model.get_inputs()[1].name: style,
self.model.get_inputs()[2].name: speed,
},
)[0]
return audio
def test(model, voice, text) -> np.ndarray:
pass
def main():
args = get_args()
print(vars(args))
show(args.model)
# tokens = phonemize_espeak("how are you doing?", "en-us")
# [['h', 'ˌ', 'a', 'ʊ', ' ', 'ɑ', 'ː', 'ɹ', ' ', 'j', 'u', 'ː', ' ', 'd', 'ˈ', 'u', 'ː', 'ɪ', 'ŋ', '?']]
m = OnnxModel(
model_filename=args.model, voices_bin=args.voices_bin, tokens=args.tokens
)
text = (
"Today as always, men fall into two groups: slaves and free men."
+ " Whoever does not have two-thirds of his day for himself, "
+ "is a slave, whatever he may be: a statesman, a businessman, "
+ "an official, or a scholar."
)
for i, voice in enumerate(m.voices.keys(), 1):
print(f"Testing {i}/{len(m.voices)} - {voice}/{args.model}")
start = time.time()
audio = m(text, voice=voice)
end = time.time()
elapsed_seconds = end - start
audio_duration = len(audio) / m.sample_rate
real_time_factor = elapsed_seconds / audio_duration
filename = f"{Path(args.model).stem}-{voice}.wav"
sf.write(
filename,
audio,
samplerate=m.sample_rate,
subtype="PCM_16",
)
print(f" Saved to {filename}")
print(f" Elapsed seconds: {elapsed_seconds:.3f}")
print(f" Audio duration in seconds: {audio_duration:.3f}")
print(
f" RTF: {elapsed_seconds:.3f}/{audio_duration:.3f} = {real_time_factor:.3f}"
)
if __name__ == "__main__":
main()