offline-recognizer-whisper-impl.h
5.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// sherpa-onnx/csrc/offline-recognizer-whisper-impl.h
//
// Copyright (c) 2022-2023 Xiaomi Corporation
#ifndef SHERPA_ONNX_CSRC_OFFLINE_RECOGNIZER_WHISPER_IMPL_H_
#define SHERPA_ONNX_CSRC_OFFLINE_RECOGNIZER_WHISPER_IMPL_H_
#include <algorithm>
#include <cmath>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "sherpa-onnx/csrc/offline-model-config.h"
#include "sherpa-onnx/csrc/offline-recognizer-impl.h"
#include "sherpa-onnx/csrc/offline-recognizer.h"
#include "sherpa-onnx/csrc/offline-whisper-decoder.h"
#include "sherpa-onnx/csrc/offline-whisper-greedy-search-decoder.h"
#include "sherpa-onnx/csrc/offline-whisper-model.h"
#include "sherpa-onnx/csrc/symbol-table.h"
#include "sherpa-onnx/csrc/transpose.h"
namespace sherpa_onnx {
class OfflineRecognizerWhisperImpl : public OfflineRecognizerImpl {
public:
explicit OfflineRecognizerWhisperImpl(const OfflineRecognizerConfig &config)
: OfflineRecognizerImpl(config),
config_(config),
symbol_table_(config_.model_config.tokens),
model_(std::make_unique<OfflineWhisperModel>(config.model_config)) {
Init();
}
template <typename Manager>
OfflineRecognizerWhisperImpl(Manager *mgr,
const OfflineRecognizerConfig &config)
: OfflineRecognizerImpl(mgr, config),
config_(config),
symbol_table_(mgr, config_.model_config.tokens),
model_(
std::make_unique<OfflineWhisperModel>(mgr, config.model_config)) {
Init();
}
void Init() {
// tokens.txt from whisper is base64 encoded, so we need to decode it
symbol_table_.ApplyBase64Decode();
if (config_.decoding_method == "greedy_search") {
decoder_ = std::make_unique<OfflineWhisperGreedySearchDecoder>(
config_.model_config.whisper, model_.get());
} else {
SHERPA_ONNX_LOGE(
"Only greedy_search is supported at present for whisper. Given %s",
config_.decoding_method.c_str());
exit(-1);
}
}
std::unique_ptr<OfflineStream> CreateStream() const override {
WhisperTag tag;
tag.dim = model_->FeatureDim();
return std::make_unique<OfflineStream>(tag);
}
void DecodeStreams(OfflineStream **ss, int32_t n) const override {
// batch decoding is not implemented yet
for (int32_t i = 0; i != n; ++i) {
DecodeStream(ss[i]);
}
}
void SetConfig(const OfflineRecognizerConfig &config) override {
config_.model_config.whisper = config.model_config.whisper;
}
OfflineRecognizerConfig GetConfig() const override { return config_; }
private:
void DecodeStream(OfflineStream *s) const {
decoder_->SetConfig(config_.model_config.whisper);
int32_t max_num_frames = 3000;
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
int32_t feat_dim = s->FeatureDim();
std::vector<float> f = s->GetFrames();
int32_t num_frames = f.size() / feat_dim;
// we use 50 here so that there will be some zero tail paddings
if (num_frames >= max_num_frames - 50) {
SHERPA_ONNX_LOGE(
"Only waves less than 30 seconds are supported. We process only the "
"first 30 seconds and discard the remaining data");
num_frames = max_num_frames - 50;
}
model_->NormalizeFeatures(f.data(), num_frames, feat_dim);
// note that 1000 is an experience-value.
// You can replace 1000 by other values, say, 100.
//
// Since we have removed the 30 seconds constraint, we need
// tail_padding_frames so that whisper is able to detect the eot token.
int32_t tail_padding_frames = 1000;
if (config_.model_config.whisper.tail_paddings > 0) {
tail_padding_frames = config_.model_config.whisper.tail_paddings;
}
int32_t actual_frames =
std::min(num_frames + tail_padding_frames, max_num_frames);
std::array<int64_t, 3> shape{1, actual_frames, feat_dim};
Ort::Value mel = Ort::Value::CreateTensor<float>(
model_->Allocator(), shape.data(), shape.size());
float *p_mel = mel.GetTensorMutableData<float>();
std::copy(f.data(), f.data() + num_frames * feat_dim, p_mel);
std::fill_n(p_mel + num_frames * feat_dim,
(actual_frames - num_frames) * feat_dim, 0);
mel = Transpose12(model_->Allocator(), &mel);
try {
auto cross_kv = model_->ForwardEncoder(std::move(mel));
auto results = decoder_->Decode(std::move(cross_kv.first),
std::move(cross_kv.second));
auto r = Convert(results[0], symbol_table_);
s->SetResult(r);
} catch (const Ort::Exception &ex) {
SHERPA_ONNX_LOGE(
"\n\nCaught exception:\n\n%s\n\nReturn an empty result. Number of "
"input frames: %d, Current tail "
"paddings: %d. If you see a lot of such exceptions, please consider "
"using a larger --whisper-tail-paddings",
ex.what(), num_frames, tail_padding_frames);
return;
}
}
private:
OfflineRecognitionResult Convert(const OfflineWhisperDecoderResult &src,
const SymbolTable &sym_table) const {
OfflineRecognitionResult r;
r.tokens.reserve(src.tokens.size());
std::string text;
for (auto i : src.tokens) {
if (!sym_table.Contains(i)) {
continue;
}
std::string s = sym_table[i];
s = ApplyInverseTextNormalization(s);
text += s;
r.tokens.push_back(s);
}
r.text = text;
r.lang = src.lang;
return r;
}
private:
OfflineRecognizerConfig config_;
SymbolTable symbol_table_;
std::unique_ptr<OfflineWhisperModel> model_;
std::unique_ptr<OfflineWhisperDecoder> decoder_;
};
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_OFFLINE_RECOGNIZER_WHISPER_IMPL_H_