show.py
1.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
import onnxruntime
import onnx
"""
[key: "model_type"
value: "silero-vad-v4"
, key: "sample_rate"
value: "16000"
, key: "version"
value: "4"
, key: "h_shape"
value: "2,1,64"
, key: "c_shape"
value: "2,1,64"
]
NodeArg(name='x', type='tensor(float)', shape=[1, 512])
NodeArg(name='h', type='tensor(float)', shape=[2, 1, 64])
NodeArg(name='c', type='tensor(float)', shape=[2, 1, 64])
-----
NodeArg(name='prob', type='tensor(float)', shape=[1, 1])
NodeArg(name='next_h', type='tensor(float)', shape=[2, 1, 64])
NodeArg(name='next_c', type='tensor(float)', shape=[2, 1, 64])
"""
def show(filename):
model = onnx.load(filename)
print(model.metadata_props)
session_opts = onnxruntime.SessionOptions()
session_opts.log_severity_level = 3
sess = onnxruntime.InferenceSession(
filename, session_opts, providers=["CPUExecutionProvider"]
)
for i in sess.get_inputs():
print(i)
print("-----")
for i in sess.get_outputs():
print(i)
def main():
show("./m.onnx")
if __name__ == "__main__":
main()