two-pass-speech-recognition-from-microphone.py
13.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
#!/usr/bin/env python3
# Two-pass real-time speech recognition from a microphone with sherpa-onnx
# Python API.
#
# The first pass uses a streaming model, which has two purposes:
#
# (1) Display a temporary result to users
#
# (2) Endpointing
#
# The second pass uses a non-streaming model. It has a higher recognition
# accuracy than the first pass model and its result is used as the final result.
#
# Please refer to
# https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
# to download pre-trained models
"""
Usage examples:
(1) Chinese: Streaming zipformer (1st pass) + Non-streaming paraformer (2nd pass)
python3 ./python-api-examples/two-pass-speech-recognition-from-microphone.py \
--first-encoder ./sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23/encoder-epoch-99-avg-1.onnx \
--first-decoder ./sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23/decoder-epoch-99-avg-1.onnx \
--first-joiner ./sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23/joiner-epoch-99-avg-1.onnx \
--first-tokens ./sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23/tokens.txt \
\
--second-paraformer ./sherpa-onnx-paraformer-zh-2023-03-28/model.int8.onnx \
--second-tokens ./sherpa-onnx-paraformer-zh-2023-03-28/tokens.txt
(2) English: Streaming zipformer (1st pass) + Non-streaming whisper (2nd pass)
python3 ./python-api-examples/two-pass-speech-recognition-from-microphone.py \
--first-encoder ./sherpa-onnx-streaming-zipformer-en-20M-2023-02-17/encoder-epoch-99-avg-1.onnx \
--first-decoder ./sherpa-onnx-streaming-zipformer-en-20M-2023-02-17/decoder-epoch-99-avg-1.onnx \
--first-joiner ./sherpa-onnx-streaming-zipformer-en-20M-2023-02-17/joiner-epoch-99-avg-1.onnx \
--first-tokens ./sherpa-onnx-streaming-zipformer-en-20M-2023-02-17/tokens.txt \
\
--second-whisper-encoder ./sherpa-onnx-whisper-tiny.en/tiny.en-encoder.int8.onnx \
--second-whisper-decoder ./sherpa-onnx-whisper-tiny.en/tiny.en-decoder.int8.onnx \
--second-tokens ./sherpa-onnx-whisper-tiny.en/tiny.en-tokens.txt
"""
import argparse
import sys
from pathlib import Path
from typing import List
import numpy as np
try:
import sounddevice as sd
except ImportError:
print("Please install sounddevice first. You can use")
print()
print(" pip install sounddevice")
print()
print("to install it")
sys.exit(-1)
import sherpa_onnx
def assert_file_exists(filename: str, message: str):
if not filename:
raise ValueError(f"Please specify {message}")
if not Path(filename).is_file():
raise ValueError(f"{message} {filename} does not exist")
def add_first_pass_streaming_model_args(parser: argparse.ArgumentParser):
parser.add_argument(
"--first-tokens",
type=str,
required=True,
help="Path to tokens.txt for the first pass",
)
parser.add_argument(
"--first-encoder",
type=str,
required=True,
help="Path to the encoder model for the first pass",
)
parser.add_argument(
"--first-decoder",
type=str,
required=True,
help="Path to the decoder model for the first pass",
)
parser.add_argument(
"--first-joiner",
type=str,
help="Path to the joiner model for the first pass",
)
parser.add_argument(
"--first-decoding-method",
type=str,
default="greedy_search",
help="""Decoding method for the first pass. Valid values are
greedy_search and modified_beam_search""",
)
parser.add_argument(
"--first-max-active-paths",
type=int,
default=4,
help="""Used only when --first-decoding-method is modified_beam_search.
It specifies number of active paths to keep during decoding.
""",
)
def add_second_pass_transducer_model_args(parser: argparse.ArgumentParser):
parser.add_argument(
"--second-encoder",
default="",
type=str,
help="Path to the transducer encoder model for the second pass",
)
parser.add_argument(
"--second-decoder",
default="",
type=str,
help="Path to the transducer decoder model for the second pass",
)
parser.add_argument(
"--second-joiner",
default="",
type=str,
help="Path to the transducer joiner model for the second pass",
)
def add_second_pass_paraformer_model_args(parser: argparse.ArgumentParser):
parser.add_argument(
"--second-paraformer",
default="",
type=str,
help="Path to the model.onnx for Paraformer for the second pass",
)
def add_second_pass_nemo_ctc_model_args(parser: argparse.ArgumentParser):
parser.add_argument(
"--second-nemo-ctc",
default="",
type=str,
help="Path to the model.onnx for NeMo CTC for the second pass",
)
def add_second_pass_whisper_model_args(parser: argparse.ArgumentParser):
parser.add_argument(
"--second-whisper-encoder",
default="",
type=str,
help="Path to whisper encoder model for the second pass",
)
parser.add_argument(
"--second-whisper-decoder",
default="",
type=str,
help="Path to whisper decoder model for the second pass",
)
parser.add_argument(
"--second-whisper-language",
default="",
type=str,
help="""It specifies the spoken language in the input audio file.
Example values: en, fr, de, zh, jp.
Available languages for multilingual models can be found at
https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10
If not specified, we infer the language from the input audio file.
""",
)
parser.add_argument(
"--second-whisper-task",
default="transcribe",
choices=["transcribe", "translate"],
type=str,
help="""For multilingual models, if you specify translate, the output
will be in English.
""",
)
def add_second_pass_non_streaming_model_args(parser: argparse.ArgumentParser):
add_second_pass_transducer_model_args(parser)
add_second_pass_nemo_ctc_model_args(parser)
add_second_pass_paraformer_model_args(parser)
add_second_pass_whisper_model_args(parser)
parser.add_argument(
"--second-tokens",
type=str,
help="Path to tokens.txt for the second pass",
)
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--provider",
type=str,
default="cpu",
help="Valid values: cpu, cuda, coreml",
)
add_first_pass_streaming_model_args(parser)
add_second_pass_non_streaming_model_args(parser)
return parser.parse_args()
def check_first_pass_args(args):
assert_file_exists(args.first_tokens, "--first-tokens")
assert_file_exists(args.first_encoder, "--first-encoder")
assert_file_exists(args.first_decoder, "--first-decoder")
assert_file_exists(args.first_joiner, "--first-joiner")
def check_second_pass_args(args):
assert_file_exists(args.second_tokens, "--second-tokens")
if args.second_encoder:
assert_file_exists(args.second_encoder, "--second-encoder")
assert_file_exists(args.second_decoder, "--second-decoder")
assert_file_exists(args.second_joiner, "--second-joiner")
elif args.second_paraformer:
assert_file_exists(args.second_paraformer, "--second-paraformer")
elif args.second_nemo_ctc:
assert_file_exists(args.second_nemo_ctc, "--second-nemo-ctc")
elif args.second_whisper_encoder:
assert_file_exists(args.second_whisper_encoder, "--second-whisper-encoder")
assert_file_exists(args.second_whisper_decoder, "--second-whisper-decoder")
else:
raise ValueError("Please specify the model for the second pass")
def create_first_pass_recognizer(args):
# Please replace the model files if needed.
# See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
# for download links.
recognizer = sherpa_onnx.OnlineRecognizer.from_transducer(
tokens=args.first_tokens,
encoder=args.first_encoder,
decoder=args.first_decoder,
joiner=args.first_joiner,
num_threads=1,
sample_rate=16000,
feature_dim=80,
decoding_method=args.first_decoding_method,
max_active_paths=args.first_max_active_paths,
provider=args.provider,
enable_endpoint_detection=True,
rule1_min_trailing_silence=2.4,
rule2_min_trailing_silence=1.2,
rule3_min_utterance_length=20,
)
return recognizer
def create_second_pass_recognizer(args) -> sherpa_onnx.OfflineRecognizer:
if args.second_encoder:
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
encoder=args.second_encoder,
decoder=args.second_decoder,
joiner=args.second_joiner,
tokens=args.second_tokens,
sample_rate=16000,
feature_dim=80,
decoding_method="greedy_search",
max_active_paths=4,
)
elif args.second_paraformer:
recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
paraformer=args.second_paraformer,
tokens=args.second_tokens,
num_threads=1,
sample_rate=16000,
feature_dim=80,
decoding_method="greedy_search",
)
elif args.second_nemo_ctc:
recognizer = sherpa_onnx.OfflineRecognizer.from_nemo_ctc(
model=args.second_nemo_ctc,
tokens=args.second_tokens,
num_threads=1,
sample_rate=16000,
feature_dim=80,
decoding_method="greedy_search",
)
elif args.second_whisper_encoder:
recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
encoder=args.second_whisper_encoder,
decoder=args.second_whisper_decoder,
tokens=args.second_tokens,
num_threads=1,
decoding_method="greedy_search",
language=args.second_whisper_language,
task=args.second_whisper_task,
)
else:
raise ValueError("Please specify at least one model for the second pass")
return recognizer
def run_second_pass(
recognizer: sherpa_onnx.OfflineRecognizer,
sample_buffers: List[np.ndarray],
sample_rate: int,
):
stream = recognizer.create_stream()
samples = np.concatenate(sample_buffers)
stream.accept_waveform(sample_rate, samples)
recognizer.decode_stream(stream)
return stream.result.text
def main():
args = get_args()
check_first_pass_args(args)
check_second_pass_args(args)
devices = sd.query_devices()
if len(devices) == 0:
print("No microphone devices found")
sys.exit(0)
print(devices)
# If you want to select a different input device, please use
# sd.default.device[0] = xxx
# where xxx is the device number
default_input_device_idx = sd.default.device[0]
print(f'Use default device: {devices[default_input_device_idx]["name"]}')
print("Creating recognizers. Please wait...")
first_recognizer = create_first_pass_recognizer(args)
second_recognizer = create_second_pass_recognizer(args)
print("Started! Please speak")
sample_rate = 16000
samples_per_read = int(0.1 * sample_rate) # 0.1 second = 100 ms
stream = first_recognizer.create_stream()
last_result = ""
segment_id = 0
sample_buffers = []
with sd.InputStream(channels=1, dtype="float32", samplerate=sample_rate) as s:
while True:
samples, _ = s.read(samples_per_read) # a blocking read
samples = samples.reshape(-1)
stream.accept_waveform(sample_rate, samples)
sample_buffers.append(samples)
while first_recognizer.is_ready(stream):
first_recognizer.decode_stream(stream)
is_endpoint = first_recognizer.is_endpoint(stream)
result = first_recognizer.get_result(stream)
result = result.lower().strip()
if last_result != result:
print(
"\r{}:{}".format(segment_id, " " * len(last_result)),
end="",
flush=True,
)
last_result = result
print("\r{}:{}".format(segment_id, result), end="", flush=True)
if is_endpoint:
if result:
result = run_second_pass(
recognizer=second_recognizer,
sample_buffers=sample_buffers,
sample_rate=sample_rate,
)
result = result.lower().strip()
sample_buffers = []
print(
"\r{}:{}".format(segment_id, " " * len(last_result)),
end="",
flush=True,
)
print("\r{}:{}".format(segment_id, result), flush=True)
segment_id += 1
else:
sample_buffers = []
first_recognizer.reset(stream)
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\nCaught Ctrl + C. Exiting")