generate-slid-apk-script.py
2.0 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#!/usr/bin/env python3
import argparse
from dataclasses import dataclass
import jinja2
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--total",
type=int,
default=1,
help="Number of runners",
)
parser.add_argument(
"--index",
type=int,
default=0,
help="Index of the current runner",
)
return parser.parse_args()
@dataclass
class SlidModel:
model_name: str
idx: int
short_name: str = ""
def get_models():
# see https://k2-fsa.github.io/sherpa/onnx/spolken-language-identification/pretrained_models.html#pre-trained-models
whisper_models = [
SlidModel(
model_name="sherpa-onnx-whisper-tiny",
idx=0,
short_name="whisper_tiny",
),
]
return whisper_models
def main():
args = get_args()
index = args.index
total = args.total
assert 0 <= index < total, (index, total)
all_model_list = get_models()
num_models = len(all_model_list)
num_per_runner = num_models // total
if num_per_runner <= 0:
raise ValueError(f"num_models: {num_models}, num_runners: {total}")
start = index * num_per_runner
end = start + num_per_runner
remaining = num_models - args.total * num_per_runner
print(f"{index}/{total}: {start}-{end}/{num_models}")
d = dict()
d["model_list"] = all_model_list[start:end]
if index < remaining:
s = args.total * num_per_runner + index
d["model_list"].append(all_model_list[s])
print(f"{s}/{num_models}")
filename_list = [
"./build-apk-slid.sh",
]
for filename in filename_list:
environment = jinja2.Environment()
with open(f"{filename}.in") as f:
s = f.read()
template = environment.from_string(s)
s = template.render(**d)
with open(filename, "w") as f:
print(s, file=f)
if __name__ == "__main__":
main()