online-zipformer-transducer-model-rknn.cc 25.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
// sherpa-onnx/csrc/rknn/online-zipformer-transducer-model-rknn.cc
//
// Copyright (c)  2023  Xiaomi Corporation

#include "sherpa-onnx/csrc/rknn/online-zipformer-transducer-model-rknn.h"

#include <memory>
#include <sstream>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>

#if __ANDROID_API__ >= 9
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif

#if __OHOS__
#include "rawfile/raw_file_manager.h"
#endif

#include "sherpa-onnx/csrc/file-utils.h"
#include "sherpa-onnx/csrc/rknn/macros.h"
#include "sherpa-onnx/csrc/text-utils.h"

namespace sherpa_onnx {

// chw -> hwc
static void Transpose(const float *src, int32_t n, int32_t channel,
                      int32_t height, int32_t width, float *dst) {
  for (int32_t i = 0; i < n; ++i) {
    for (int32_t h = 0; h < height; ++h) {
      for (int32_t w = 0; w < width; ++w) {
        for (int32_t c = 0; c < channel; ++c) {
          // dst[h, w, c] = src[c, h, w]
          dst[i * height * width * channel + h * width * channel + w * channel +
              c] = src[i * height * width * channel + c * height * width +
                       h * width + w];
        }
      }
    }
  }
}

static std::string ToString(const rknn_tensor_attr &attr) {
  std::ostringstream os;
  os << "{";
  os << attr.index;
  os << ", name: " << attr.name;
  os << ", shape: (";
  std::string sep;
  for (int32_t i = 0; i < static_cast<int32_t>(attr.n_dims); ++i) {
    os << sep << attr.dims[i];
    sep = ",";
  }
  os << ")";
  os << ", n_elems: " << attr.n_elems;
  os << ", size: " << attr.size;
  os << ", fmt: " << get_format_string(attr.fmt);
  os << ", type: " << get_type_string(attr.type);
  os << ", pass_through: " << (attr.pass_through ? "true" : "false");
  os << "}";
  return os.str();
}

static std::unordered_map<std::string, std::string> Parse(
    const rknn_custom_string &custom_string) {
  std::unordered_map<std::string, std::string> ans;
  std::vector<std::string> fields;
  SplitStringToVector(custom_string.string, ";", false, &fields);

  std::vector<std::string> tmp;
  for (const auto &f : fields) {
    SplitStringToVector(f, "=", false, &tmp);
    if (tmp.size() != 2) {
      SHERPA_ONNX_LOGE("Invalid custom string %s for %s", custom_string.string,
                       f.c_str());
      SHERPA_ONNX_EXIT(-1);
    }
    ans[std::move(tmp[0])] = std::move(tmp[1]);
  }

  return ans;
}

class OnlineZipformerTransducerModelRknn::Impl {
 public:
  ~Impl() {
    auto ret = rknn_destroy(encoder_ctx_);
    if (ret != RKNN_SUCC) {
      SHERPA_ONNX_LOGE("Failed to destroy the encoder context");
    }

    ret = rknn_destroy(decoder_ctx_);
    if (ret != RKNN_SUCC) {
      SHERPA_ONNX_LOGE("Failed to destroy the decoder context");
    }

    ret = rknn_destroy(joiner_ctx_);
    if (ret != RKNN_SUCC) {
      SHERPA_ONNX_LOGE("Failed to destroy the joiner context");
    }
  }

  explicit Impl(const OnlineModelConfig &config) : config_(config) {
    {
      auto buf = ReadFile(config.transducer.encoder);
      InitEncoder(buf.data(), buf.size());
    }

    {
      auto buf = ReadFile(config.transducer.decoder);
      InitDecoder(buf.data(), buf.size());
    }

    {
      auto buf = ReadFile(config.transducer.joiner);
      InitJoiner(buf.data(), buf.size());
    }

    // Now select which core to run for RK3588
    int32_t ret_encoder = RKNN_SUCC;
    int32_t ret_decoder = RKNN_SUCC;
    int32_t ret_joiner = RKNN_SUCC;
    switch (config_.num_threads) {
      case 1:
        ret_encoder = rknn_set_core_mask(encoder_ctx_, RKNN_NPU_CORE_AUTO);
        ret_decoder = rknn_set_core_mask(decoder_ctx_, RKNN_NPU_CORE_AUTO);
        ret_joiner = rknn_set_core_mask(joiner_ctx_, RKNN_NPU_CORE_AUTO);
        break;
      case 0:
        ret_encoder = rknn_set_core_mask(encoder_ctx_, RKNN_NPU_CORE_0);
        ret_decoder = rknn_set_core_mask(decoder_ctx_, RKNN_NPU_CORE_0);
        ret_joiner = rknn_set_core_mask(joiner_ctx_, RKNN_NPU_CORE_0);
        break;
      case -1:
        ret_encoder = rknn_set_core_mask(encoder_ctx_, RKNN_NPU_CORE_1);
        ret_decoder = rknn_set_core_mask(decoder_ctx_, RKNN_NPU_CORE_1);
        ret_joiner = rknn_set_core_mask(joiner_ctx_, RKNN_NPU_CORE_1);
        break;
      case -2:
        ret_encoder = rknn_set_core_mask(encoder_ctx_, RKNN_NPU_CORE_2);
        ret_decoder = rknn_set_core_mask(decoder_ctx_, RKNN_NPU_CORE_2);
        ret_joiner = rknn_set_core_mask(joiner_ctx_, RKNN_NPU_CORE_2);
        break;
      case -3:
        ret_encoder = rknn_set_core_mask(encoder_ctx_, RKNN_NPU_CORE_0_1);
        ret_decoder = rknn_set_core_mask(decoder_ctx_, RKNN_NPU_CORE_0_1);
        ret_joiner = rknn_set_core_mask(joiner_ctx_, RKNN_NPU_CORE_0_1);
        break;
      case -4:
        ret_encoder = rknn_set_core_mask(encoder_ctx_, RKNN_NPU_CORE_0_1_2);
        ret_decoder = rknn_set_core_mask(decoder_ctx_, RKNN_NPU_CORE_0_1_2);
        ret_joiner = rknn_set_core_mask(joiner_ctx_, RKNN_NPU_CORE_0_1_2);
        break;
      default:
        SHERPA_ONNX_LOGE(
            "Valid num_threads for rk npu is 1 (auto), 0 (core 0), -1 (core "
            "1), -2 (core 2), -3 (core 0_1), -4 (core 0_1_2). Given: %d",
            config_.num_threads);
        break;
    }
    if (ret_encoder != RKNN_SUCC) {
      SHERPA_ONNX_LOGE(
          "Failed to select npu core to run encoder (You can ignore it if you "
          "are not using RK3588.");
    }

    if (ret_decoder != RKNN_SUCC) {
      SHERPA_ONNX_LOGE(
          "Failed to select npu core to run decoder (You can ignore it if you "
          "are not using RK3588.");
    }

    if (ret_decoder != RKNN_SUCC) {
      SHERPA_ONNX_LOGE(
          "Failed to select npu core to run joiner (You can ignore it if you "
          "are not using RK3588.");
    }
  }

  // TODO(fangjun): Support Android

  std::vector<std::vector<uint8_t>> GetEncoderInitStates() const {
    // encoder_input_attrs_[0] is for the feature
    // encoder_input_attrs_[1:] is for states
    // so we use -1 here
    std::vector<std::vector<uint8_t>> states(encoder_input_attrs_.size() - 1);

    int32_t i = -1;
    for (auto &attr : encoder_input_attrs_) {
      i += 1;
      if (i == 0) {
        // skip processing the attr for features.
        continue;
      }

      if (attr.type == RKNN_TENSOR_FLOAT16) {
        states[i - 1].resize(attr.n_elems * sizeof(float));
      } else if (attr.type == RKNN_TENSOR_INT64) {
        states[i - 1].resize(attr.n_elems * sizeof(int64_t));
      } else {
        SHERPA_ONNX_LOGE("Unsupported tensor type: %d, %s", attr.type,
                         get_type_string(attr.type));
        SHERPA_ONNX_EXIT(-1);
      }
    }

    return states;
  }

  std::pair<std::vector<float>, std::vector<std::vector<uint8_t>>> RunEncoder(
      std::vector<float> features,
      std::vector<std::vector<uint8_t>> states) const {
    std::vector<rknn_input> inputs(encoder_input_attrs_.size());

    for (int32_t i = 0; i < static_cast<int32_t>(inputs.size()); ++i) {
      auto &input = inputs[i];
      auto &attr = encoder_input_attrs_[i];
      input.index = attr.index;

      if (attr.type == RKNN_TENSOR_FLOAT16) {
        input.type = RKNN_TENSOR_FLOAT32;
      } else if (attr.type == RKNN_TENSOR_INT64) {
        input.type = RKNN_TENSOR_INT64;
      } else {
        SHERPA_ONNX_LOGE("Unsupported tensor type %d, %s", attr.type,
                         get_type_string(attr.type));
        SHERPA_ONNX_EXIT(-1);
      }

      input.fmt = attr.fmt;
      if (i == 0) {
        input.buf = reinterpret_cast<void *>(features.data());
        input.size = features.size() * sizeof(float);
      } else {
        input.buf = reinterpret_cast<void *>(states[i - 1].data());
        input.size = states[i - 1].size();
      }
    }

    std::vector<float> encoder_out(encoder_output_attrs_[0].n_elems);

    // Note(fangjun): We can reuse the memory from input argument `states`
    // auto next_states = GetEncoderInitStates();
    auto &next_states = states;

    std::vector<rknn_output> outputs(encoder_output_attrs_.size());
    for (int32_t i = 0; i < outputs.size(); ++i) {
      auto &output = outputs[i];
      auto &attr = encoder_output_attrs_[i];
      output.index = attr.index;
      output.is_prealloc = 1;

      if (attr.type == RKNN_TENSOR_FLOAT16) {
        output.want_float = 1;
      } else if (attr.type == RKNN_TENSOR_INT64) {
        output.want_float = 0;
      } else {
        SHERPA_ONNX_LOGE("Unsupported tensor type %d, %s", attr.type,
                         get_type_string(attr.type));
        SHERPA_ONNX_EXIT(-1);
      }

      if (i == 0) {
        output.size = encoder_out.size() * sizeof(float);
        output.buf = reinterpret_cast<void *>(encoder_out.data());
      } else {
        output.size = next_states[i - 1].size();
        output.buf = reinterpret_cast<void *>(next_states[i - 1].data());
      }
    }

    auto ret = rknn_inputs_set(encoder_ctx_, inputs.size(), inputs.data());
    SHERPA_ONNX_RKNN_CHECK(ret, "Failed to set encoder inputs");

    ret = rknn_run(encoder_ctx_, nullptr);
    SHERPA_ONNX_RKNN_CHECK(ret, "Failed to run encoder");

    ret =
        rknn_outputs_get(encoder_ctx_, outputs.size(), outputs.data(), nullptr);
    SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get encoder output");

    for (int32_t i = 0; i < next_states.size(); ++i) {
      const auto &attr = encoder_input_attrs_[i + 1];
      if (attr.n_dims == 4) {
        // TODO(fangjun): The transpose is copied from
        // https://github.com/airockchip/rknn_model_zoo/blob/main/examples/zipformer/cpp/process.cc#L22
        // I don't understand why we need to do that.
        std::vector<uint8_t> dst(next_states[i].size());
        int32_t n = attr.dims[0];
        int32_t h = attr.dims[1];
        int32_t w = attr.dims[2];
        int32_t c = attr.dims[3];
        Transpose(reinterpret_cast<const float *>(next_states[i].data()), n, c,
                  h, w, reinterpret_cast<float *>(dst.data()));
        next_states[i] = std::move(dst);
      }
    }

    return {std::move(encoder_out), std::move(next_states)};
  }

  std::vector<float> RunDecoder(std::vector<int64_t> decoder_input) const {
    auto &attr = decoder_input_attrs_[0];
    rknn_input input;

    input.index = 0;
    input.type = RKNN_TENSOR_INT64;
    input.fmt = attr.fmt;
    input.buf = decoder_input.data();
    input.size = decoder_input.size() * sizeof(int64_t);

    std::vector<float> decoder_out(decoder_output_attrs_[0].n_elems);
    rknn_output output;
    output.index = decoder_output_attrs_[0].index;
    output.is_prealloc = 1;
    output.want_float = 1;
    output.size = decoder_out.size() * sizeof(float);
    output.buf = decoder_out.data();

    auto ret = rknn_inputs_set(decoder_ctx_, 1, &input);
    SHERPA_ONNX_RKNN_CHECK(ret, "Failed to set decoder inputs");

    ret = rknn_run(decoder_ctx_, nullptr);
    SHERPA_ONNX_RKNN_CHECK(ret, "Failed to run decoder");

    ret = rknn_outputs_get(decoder_ctx_, 1, &output, nullptr);
    SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get decoder output");

    return decoder_out;
  }

  std::vector<float> RunJoiner(const float *encoder_out,
                               const float *decoder_out) const {
    std::vector<rknn_input> inputs(2);
    inputs[0].index = 0;
    inputs[0].type = RKNN_TENSOR_FLOAT32;
    inputs[0].fmt = joiner_input_attrs_[0].fmt;
    inputs[0].buf = const_cast<float *>(encoder_out);
    inputs[0].size = joiner_input_attrs_[0].n_elems * sizeof(float);

    inputs[1].index = 1;
    inputs[1].type = RKNN_TENSOR_FLOAT32;
    inputs[1].fmt = joiner_input_attrs_[1].fmt;
    inputs[1].buf = const_cast<float *>(decoder_out);
    inputs[1].size = joiner_input_attrs_[1].n_elems * sizeof(float);

    std::vector<float> joiner_out(joiner_output_attrs_[0].n_elems);
    rknn_output output;
    output.index = joiner_output_attrs_[0].index;
    output.is_prealloc = 1;
    output.want_float = 1;
    output.size = joiner_out.size() * sizeof(float);
    output.buf = joiner_out.data();

    auto ret = rknn_inputs_set(joiner_ctx_, inputs.size(), inputs.data());
    SHERPA_ONNX_RKNN_CHECK(ret, "Failed to set joiner inputs");

    ret = rknn_run(joiner_ctx_, nullptr);
    SHERPA_ONNX_RKNN_CHECK(ret, "Failed to run joiner");

    ret = rknn_outputs_get(joiner_ctx_, 1, &output, nullptr);
    SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get joiner output");

    return joiner_out;
  }

  int32_t ContextSize() const { return context_size_; }

  int32_t ChunkSize() const { return T_; }

  int32_t ChunkShift() const { return decode_chunk_len_; }

  int32_t VocabSize() const { return vocab_size_; }

  rknn_tensor_attr GetEncoderOutAttr() const {
    return encoder_output_attrs_[0];
  }

 private:
  void InitEncoder(void *model_data, size_t model_data_length) {
    auto ret =
        rknn_init(&encoder_ctx_, model_data, model_data_length, 0, nullptr);
    SHERPA_ONNX_RKNN_CHECK(ret, "Failed to init encoder '%s'",
                           config_.transducer.encoder.c_str());

    if (config_.debug) {
      rknn_sdk_version v;
      ret = rknn_query(encoder_ctx_, RKNN_QUERY_SDK_VERSION, &v, sizeof(v));
      SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get rknn sdk version");

      SHERPA_ONNX_LOGE("sdk api version: %s, driver version: %s", v.api_version,
                       v.drv_version);
    }

    rknn_input_output_num io_num;
    ret = rknn_query(encoder_ctx_, RKNN_QUERY_IN_OUT_NUM, &io_num,
                     sizeof(io_num));
    SHERPA_ONNX_RKNN_CHECK(ret,
                           "Failed to get I/O information for the encoder");

    if (config_.debug) {
      SHERPA_ONNX_LOGE("encoder: %d inputs, %d outputs",
                       static_cast<int32_t>(io_num.n_input),
                       static_cast<int32_t>(io_num.n_output));
    }

    encoder_input_attrs_.resize(io_num.n_input);
    encoder_output_attrs_.resize(io_num.n_output);

    int32_t i = 0;
    for (auto &attr : encoder_input_attrs_) {
      memset(&attr, 0, sizeof(attr));
      attr.index = i;
      ret =
          rknn_query(encoder_ctx_, RKNN_QUERY_INPUT_ATTR, &attr, sizeof(attr));
      SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get attr for encoder input %d", i);
      i += 1;
    }

    if (config_.debug) {
      std::ostringstream os;
      std::string sep;
      for (auto &attr : encoder_input_attrs_) {
        os << sep << ToString(attr);
        sep = "\n";
      }
      SHERPA_ONNX_LOGE("\n----------Encoder inputs info----------\n%s",
                       os.str().c_str());
    }

    i = 0;
    for (auto &attr : encoder_output_attrs_) {
      memset(&attr, 0, sizeof(attr));
      attr.index = i;
      ret =
          rknn_query(encoder_ctx_, RKNN_QUERY_OUTPUT_ATTR, &attr, sizeof(attr));
      SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get attr for encoder output %d",
                             i);
      i += 1;
    }

    if (config_.debug) {
      std::ostringstream os;
      std::string sep;
      for (auto &attr : encoder_output_attrs_) {
        os << sep << ToString(attr);
        sep = "\n";
      }
      SHERPA_ONNX_LOGE("\n----------Encoder outputs info----------\n%s",
                       os.str().c_str());
    }

    rknn_custom_string custom_string;
    ret = rknn_query(encoder_ctx_, RKNN_QUERY_CUSTOM_STRING, &custom_string,
                     sizeof(custom_string));
    SHERPA_ONNX_RKNN_CHECK(
        ret, "Failed to read custom string from the encoder model");
    if (config_.debug) {
      SHERPA_ONNX_LOGE("customs string: %s", custom_string.string);
    }
    auto meta = Parse(custom_string);

    if (config_.debug) {
      for (const auto &p : meta) {
        SHERPA_ONNX_LOGE("%s: %s", p.first.c_str(), p.second.c_str());
      }
    }

    if (meta.count("encoder_dims")) {
      SplitStringToIntegers(meta.at("encoder_dims"), ",", false,
                            &encoder_dims_);
    }

    if (meta.count("attention_dims")) {
      SplitStringToIntegers(meta.at("attention_dims"), ",", false,
                            &attention_dims_);
    }

    if (meta.count("num_encoder_layers")) {
      SplitStringToIntegers(meta.at("num_encoder_layers"), ",", false,
                            &num_encoder_layers_);
    }

    if (meta.count("cnn_module_kernels")) {
      SplitStringToIntegers(meta.at("cnn_module_kernels"), ",", false,
                            &cnn_module_kernels_);
    }

    if (meta.count("left_context_len")) {
      SplitStringToIntegers(meta.at("left_context_len"), ",", false,
                            &left_context_len_);
    }

    if (meta.count("T")) {
      T_ = atoi(meta.at("T").c_str());
    }

    if (meta.count("decode_chunk_len")) {
      decode_chunk_len_ = atoi(meta.at("decode_chunk_len").c_str());
    }

    if (meta.count("context_size")) {
      context_size_ = atoi(meta.at("context_size").c_str());
    }

    if (config_.debug) {
      auto print = [](const std::vector<int32_t> &v, const char *name) {
        std::ostringstream os;
        os << name << ": ";
        for (auto i : v) {
          os << i << " ";
        }
#if __OHOS__
        SHERPA_ONNX_LOGE("%{public}s\n", os.str().c_str());
#else
        SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
#endif
      };
      print(encoder_dims_, "encoder_dims");
      print(attention_dims_, "attention_dims");
      print(num_encoder_layers_, "num_encoder_layers");
      print(cnn_module_kernels_, "cnn_module_kernels");
      print(left_context_len_, "left_context_len");
#if __OHOS__
      SHERPA_ONNX_LOGE("T: %{public}d", T_);
      SHERPA_ONNX_LOGE("decode_chunk_len_: %{public}d", decode_chunk_len_);
      SHERPA_ONNX_LOGE("context_size: %{public}d", context_size_);
#else
      SHERPA_ONNX_LOGE("T: %d", T_);
      SHERPA_ONNX_LOGE("decode_chunk_len_: %d", decode_chunk_len_);
      SHERPA_ONNX_LOGE("context_size: %d", context_size_);
#endif
    }
  }

  void InitDecoder(void *model_data, size_t model_data_length) {
    auto ret =
        rknn_init(&decoder_ctx_, model_data, model_data_length, 0, nullptr);
    SHERPA_ONNX_RKNN_CHECK(ret, "Failed to init decoder '%s'",
                           config_.transducer.decoder.c_str());

    rknn_input_output_num io_num;
    ret = rknn_query(decoder_ctx_, RKNN_QUERY_IN_OUT_NUM, &io_num,
                     sizeof(io_num));
    SHERPA_ONNX_RKNN_CHECK(ret,
                           "Failed to get I/O information for the decoder");

    if (io_num.n_input != 1) {
      SHERPA_ONNX_LOGE("Expect only 1 decoder input. Given %d",
                       static_cast<int32_t>(io_num.n_input));
      SHERPA_ONNX_EXIT(-1);
    }

    if (io_num.n_output != 1) {
      SHERPA_ONNX_LOGE("Expect only 1 decoder output. Given %d",
                       static_cast<int32_t>(io_num.n_output));
      SHERPA_ONNX_EXIT(-1);
    }

    if (config_.debug) {
      SHERPA_ONNX_LOGE("decoder: %d inputs, %d outputs",
                       static_cast<int32_t>(io_num.n_input),
                       static_cast<int32_t>(io_num.n_output));
    }

    decoder_input_attrs_.resize(io_num.n_input);
    decoder_output_attrs_.resize(io_num.n_output);

    int32_t i = 0;
    for (auto &attr : decoder_input_attrs_) {
      memset(&attr, 0, sizeof(attr));
      attr.index = i;
      ret =
          rknn_query(decoder_ctx_, RKNN_QUERY_INPUT_ATTR, &attr, sizeof(attr));
      SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get attr for decoder input %d", i);
      i += 1;
    }

    if (config_.debug) {
      std::ostringstream os;
      std::string sep;
      for (auto &attr : decoder_input_attrs_) {
        os << sep << ToString(attr);
        sep = "\n";
      }
      SHERPA_ONNX_LOGE("\n----------Decoder inputs info----------\n%s",
                       os.str().c_str());
    }

    if (decoder_input_attrs_[0].type != RKNN_TENSOR_INT64) {
      SHERPA_ONNX_LOGE("Expect int64 for decoder input. Given: %d, %s",
                       decoder_input_attrs_[0].type,
                       get_type_string(decoder_input_attrs_[0].type));
      SHERPA_ONNX_EXIT(-1);
    }

    i = 0;
    for (auto &attr : decoder_output_attrs_) {
      memset(&attr, 0, sizeof(attr));
      attr.index = i;
      ret =
          rknn_query(decoder_ctx_, RKNN_QUERY_OUTPUT_ATTR, &attr, sizeof(attr));
      SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get attr for decoder output %d",
                             i);
      i += 1;
    }

    if (config_.debug) {
      std::ostringstream os;
      std::string sep;
      for (auto &attr : decoder_output_attrs_) {
        os << sep << ToString(attr);
        sep = "\n";
      }
      SHERPA_ONNX_LOGE("\n----------Decoder outputs info----------\n%s",
                       os.str().c_str());
    }
  }

  void InitJoiner(void *model_data, size_t model_data_length) {
    auto ret =
        rknn_init(&joiner_ctx_, model_data, model_data_length, 0, nullptr);
    SHERPA_ONNX_RKNN_CHECK(ret, "Failed to init joiner '%s'",
                           config_.transducer.joiner.c_str());

    rknn_input_output_num io_num;
    ret =
        rknn_query(joiner_ctx_, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
    SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get I/O information for the joiner");

    if (config_.debug) {
      SHERPA_ONNX_LOGE("joiner: %d inputs, %d outputs",
                       static_cast<int32_t>(io_num.n_input),
                       static_cast<int32_t>(io_num.n_output));
    }

    joiner_input_attrs_.resize(io_num.n_input);
    joiner_output_attrs_.resize(io_num.n_output);

    int32_t i = 0;
    for (auto &attr : joiner_input_attrs_) {
      memset(&attr, 0, sizeof(attr));
      attr.index = i;
      ret = rknn_query(joiner_ctx_, RKNN_QUERY_INPUT_ATTR, &attr, sizeof(attr));
      SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get attr for joiner input %d", i);
      i += 1;
    }

    if (config_.debug) {
      std::ostringstream os;
      std::string sep;
      for (auto &attr : joiner_input_attrs_) {
        os << sep << ToString(attr);
        sep = "\n";
      }
      SHERPA_ONNX_LOGE("\n----------Joiner inputs info----------\n%s",
                       os.str().c_str());
    }

    i = 0;
    for (auto &attr : joiner_output_attrs_) {
      memset(&attr, 0, sizeof(attr));
      attr.index = i;
      ret =
          rknn_query(joiner_ctx_, RKNN_QUERY_OUTPUT_ATTR, &attr, sizeof(attr));
      SHERPA_ONNX_RKNN_CHECK(ret, "Failed to get attr for joiner output %d", i);
      i += 1;
    }

    if (config_.debug) {
      std::ostringstream os;
      std::string sep;
      for (auto &attr : joiner_output_attrs_) {
        os << sep << ToString(attr);
        sep = "\n";
      }
      SHERPA_ONNX_LOGE("\n----------Joiner outputs info----------\n%s",
                       os.str().c_str());
    }

    vocab_size_ = joiner_output_attrs_[0].dims[1];
    if (config_.debug) {
      SHERPA_ONNX_LOGE("vocab_size: %d", vocab_size_);
    }
  }

 private:
  OnlineModelConfig config_;
  rknn_context encoder_ctx_ = 0;
  rknn_context decoder_ctx_ = 0;
  rknn_context joiner_ctx_ = 0;

  std::vector<rknn_tensor_attr> encoder_input_attrs_;
  std::vector<rknn_tensor_attr> encoder_output_attrs_;

  std::vector<rknn_tensor_attr> decoder_input_attrs_;
  std::vector<rknn_tensor_attr> decoder_output_attrs_;

  std::vector<rknn_tensor_attr> joiner_input_attrs_;
  std::vector<rknn_tensor_attr> joiner_output_attrs_;

  std::vector<int32_t> encoder_dims_;
  std::vector<int32_t> attention_dims_;
  std::vector<int32_t> num_encoder_layers_;
  std::vector<int32_t> cnn_module_kernels_;
  std::vector<int32_t> left_context_len_;

  int32_t T_ = 0;
  int32_t decode_chunk_len_ = 0;

  int32_t context_size_ = 2;
  int32_t vocab_size_ = 0;
};

OnlineZipformerTransducerModelRknn::~OnlineZipformerTransducerModelRknn() =
    default;

OnlineZipformerTransducerModelRknn::OnlineZipformerTransducerModelRknn(
    const OnlineModelConfig &config)
    : impl_(std::make_unique<Impl>(config)) {}

template <typename Manager>
OnlineZipformerTransducerModelRknn::OnlineZipformerTransducerModelRknn(
    Manager *mgr, const OnlineModelConfig &config)
    : impl_(std::make_unique<OnlineZipformerTransducerModelRknn>(mgr, config)) {
}

std::vector<std::vector<uint8_t>>
OnlineZipformerTransducerModelRknn::GetEncoderInitStates() const {
  return impl_->GetEncoderInitStates();
}

std::pair<std::vector<float>, std::vector<std::vector<uint8_t>>>
OnlineZipformerTransducerModelRknn::RunEncoder(
    std::vector<float> features,
    std::vector<std::vector<uint8_t>> states) const {
  return impl_->RunEncoder(std::move(features), std::move(states));
}

std::vector<float> OnlineZipformerTransducerModelRknn::RunDecoder(
    std::vector<int64_t> decoder_input) const {
  return impl_->RunDecoder(std::move(decoder_input));
}

std::vector<float> OnlineZipformerTransducerModelRknn::RunJoiner(
    const float *encoder_out, const float *decoder_out) const {
  return impl_->RunJoiner(encoder_out, decoder_out);
}

int32_t OnlineZipformerTransducerModelRknn::ContextSize() const {
  return impl_->ContextSize();
}

int32_t OnlineZipformerTransducerModelRknn::ChunkSize() const {
  return impl_->ChunkSize();
}

int32_t OnlineZipformerTransducerModelRknn::ChunkShift() const {
  return impl_->ChunkShift();
}

int32_t OnlineZipformerTransducerModelRknn::VocabSize() const {
  return impl_->VocabSize();
}

rknn_tensor_attr OnlineZipformerTransducerModelRknn::GetEncoderOutAttr() const {
  return impl_->GetEncoderOutAttr();
}

#if __ANDROID_API__ >= 9
template OnlineZipformerTransducerModelRknn::OnlineZipformerTransducerModelRknn(
    AAssetManager *mgr, const OnlineModelConfig &config);
#endif

#if __OHOS__
template OnlineZipformerTransducerModelRknn::OnlineZipformerTransducerModelRknn(
    NativeResourceManager *mgr, const OnlineModelConfig &config);
#endif

}  // namespace sherpa_onnx