offline-paraformer-model.cc
4.0 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// sherpa-onnx/csrc/offline-paraformer-model.cc
//
// Copyright (c) 2022-2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/offline-paraformer-model.h"
#include <algorithm>
#include <string>
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/text-utils.h"
namespace sherpa_onnx {
class OfflineParaformerModel::Impl {
public:
explicit Impl(const OfflineModelConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_ERROR),
sess_opts_{},
allocator_{} {
sess_opts_.SetIntraOpNumThreads(config_.num_threads);
sess_opts_.SetInterOpNumThreads(config_.num_threads);
Init();
}
std::pair<Ort::Value, Ort::Value> Forward(Ort::Value features,
Ort::Value features_length) {
std::array<Ort::Value, 2> inputs = {std::move(features),
std::move(features_length)};
auto out =
sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
output_names_ptr_.data(), output_names_ptr_.size());
return {std::move(out[0]), std::move(out[1])};
}
int32_t VocabSize() const { return vocab_size_; }
int32_t LfrWindowSize() const { return lfr_window_size_; }
int32_t LfrWindowShift() const { return lfr_window_shift_; }
const std::vector<float> &NegativeMean() const { return neg_mean_; }
const std::vector<float> &InverseStdDev() const { return inv_stddev_; }
OrtAllocator *Allocator() const { return allocator_; }
private:
void Init() {
auto buf = ReadFile(config_.paraformer.model);
sess_ = std::make_unique<Ort::Session>(env_, buf.data(), buf.size(),
sess_opts_);
GetInputNames(sess_.get(), &input_names_, &input_names_ptr_);
GetOutputNames(sess_.get(), &output_names_, &output_names_ptr_);
// get meta data
Ort::ModelMetadata meta_data = sess_->GetModelMetadata();
if (config_.debug) {
std::ostringstream os;
PrintModelMetadata(os, meta_data);
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
}
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
SHERPA_ONNX_READ_META_DATA(vocab_size_, "vocab_size");
SHERPA_ONNX_READ_META_DATA(lfr_window_size_, "lfr_window_size");
SHERPA_ONNX_READ_META_DATA(lfr_window_shift_, "lfr_window_shift");
SHERPA_ONNX_READ_META_DATA_VEC_FLOAT(neg_mean_, "neg_mean");
SHERPA_ONNX_READ_META_DATA_VEC_FLOAT(inv_stddev_, "inv_stddev");
}
private:
OfflineModelConfig config_;
Ort::Env env_;
Ort::SessionOptions sess_opts_;
Ort::AllocatorWithDefaultOptions allocator_;
std::unique_ptr<Ort::Session> sess_;
std::vector<std::string> input_names_;
std::vector<const char *> input_names_ptr_;
std::vector<std::string> output_names_;
std::vector<const char *> output_names_ptr_;
std::vector<float> neg_mean_;
std::vector<float> inv_stddev_;
int32_t vocab_size_ = 0; // initialized in Init
int32_t lfr_window_size_ = 0;
int32_t lfr_window_shift_ = 0;
};
OfflineParaformerModel::OfflineParaformerModel(const OfflineModelConfig &config)
: impl_(std::make_unique<Impl>(config)) {}
OfflineParaformerModel::~OfflineParaformerModel() = default;
std::pair<Ort::Value, Ort::Value> OfflineParaformerModel::Forward(
Ort::Value features, Ort::Value features_length) {
return impl_->Forward(std::move(features), std::move(features_length));
}
int32_t OfflineParaformerModel::VocabSize() const { return impl_->VocabSize(); }
int32_t OfflineParaformerModel::LfrWindowSize() const {
return impl_->LfrWindowSize();
}
int32_t OfflineParaformerModel::LfrWindowShift() const {
return impl_->LfrWindowShift();
}
const std::vector<float> &OfflineParaformerModel::NegativeMean() const {
return impl_->NegativeMean();
}
const std::vector<float> &OfflineParaformerModel::InverseStdDev() const {
return impl_->InverseStdDev();
}
OrtAllocator *OfflineParaformerModel::Allocator() const {
return impl_->Allocator();
}
} // namespace sherpa_onnx