offline-ctc-model.h
1.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
// sherpa-onnx/csrc/offline-ctc-model.h
//
// Copyright (c) 2022-2023 Xiaomi Corporation
#ifndef SHERPA_ONNX_CSRC_OFFLINE_CTC_MODEL_H_
#define SHERPA_ONNX_CSRC_OFFLINE_CTC_MODEL_H_
#include <memory>
#include <string>
#include <utility>
#include "onnxruntime_cxx_api.h" // NOLINT
#include "sherpa-onnx/csrc/offline-model-config.h"
namespace sherpa_onnx {
class OfflineCtcModel {
public:
virtual ~OfflineCtcModel() = default;
static std::unique_ptr<OfflineCtcModel> Create(
const OfflineModelConfig &config);
/** Run the forward method of the model.
*
* @param features A tensor of shape (N, T, C). It is changed in-place.
* @param features_length A 1-D tensor of shape (N,) containing number of
* valid frames in `features` before padding.
* Its dtype is int64_t.
*
* @return Return a pair containing:
* - log_probs: A 3-D tensor of shape (N, T', vocab_size).
* - log_probs_length A 1-D tensor of shape (N,). Its dtype is int64_t
*/
virtual std::pair<Ort::Value, Ort::Value> Forward(
Ort::Value features, Ort::Value features_length) = 0;
/** Return the vocabulary size of the model
*/
virtual int32_t VocabSize() const = 0;
/** SubsamplingFactor of the model
*
* For Citrinet, the subsampling factor is usually 4.
* For Conformer CTC, the subsampling factor is usually 8.
*/
virtual int32_t SubsamplingFactor() const = 0;
/** Return an allocator for allocating memory
*/
virtual OrtAllocator *Allocator() const = 0;
/** For some models, e.g., those from NeMo, they require some preprocessing
* for the features.
*/
virtual std::string FeatureNormalizationMethod() const { return {}; }
};
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_OFFLINE_CTC_MODEL_H_