online-rnn-lm.cc
4.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
// sherpa-onnx/csrc/on-rnn-lm.cc
//
// Copyright (c) 2023 Pingfeng Luo
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/online-rnn-lm.h"
#include <string>
#include <utility>
#include <vector>
#include "onnxruntime_cxx_api.h" // NOLINT
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/text-utils.h"
namespace sherpa_onnx {
class OnlineRnnLM::Impl {
public:
explicit Impl(const OnlineLMConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_ERROR),
sess_opts_{},
allocator_{} {
Init(config);
}
std::pair<Ort::Value, std::vector<Ort::Value>> Rescore(
Ort::Value x, Ort::Value y, std::vector<Ort::Value> states) {
std::array<Ort::Value, 4> inputs = {
std::move(x), std::move(y), std::move(states[0]), std::move(states[1])};
auto out =
sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
output_names_ptr_.data(), output_names_ptr_.size());
std::vector<Ort::Value> next_states;
next_states.reserve(2);
next_states.push_back(std::move(out[1]));
next_states.push_back(std::move(out[2]));
return {std::move(out[0]), std::move(next_states)};
}
std::vector<Ort::Value> GetInitStates() const {
std::vector<Ort::Value> ans;
ans.reserve(init_states_.size());
for (const auto &s : init_states_) {
ans.emplace_back(Clone(allocator_, &s));
}
return ans;
}
private:
void Init(const OnlineLMConfig &config) {
auto buf = ReadFile(config_.model);
sess_ = std::make_unique<Ort::Session>(env_, buf.data(), buf.size(),
sess_opts_);
GetInputNames(sess_.get(), &input_names_, &input_names_ptr_);
GetOutputNames(sess_.get(), &output_names_, &output_names_ptr_);
Ort::ModelMetadata meta_data = sess_->GetModelMetadata();
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
SHERPA_ONNX_READ_META_DATA(rnn_num_layers_, "num_layers");
SHERPA_ONNX_READ_META_DATA(rnn_hidden_size_, "hidden_size");
SHERPA_ONNX_READ_META_DATA(sos_id_, "sos_id");
ComputeInitStates();
}
void ComputeInitStates() {
constexpr int32_t kBatchSize = 1;
std::array<int64_t, 3> h_shape{rnn_num_layers_, kBatchSize,
rnn_hidden_size_};
std::array<int64_t, 3> c_shape{rnn_num_layers_, kBatchSize,
rnn_hidden_size_};
Ort::Value h = Ort::Value::CreateTensor<float>(allocator_, h_shape.data(),
h_shape.size());
Ort::Value c = Ort::Value::CreateTensor<float>(allocator_, c_shape.data(),
c_shape.size());
Fill<float>(&h, 0);
Fill<float>(&c, 0);
std::array<int64_t, 2> x_shape{1, 1};
// shape of x and y are same
Ort::Value x = Ort::Value::CreateTensor<int64_t>(allocator_, x_shape.data(),
x_shape.size());
Ort::Value y = Ort::Value::CreateTensor<int64_t>(allocator_, x_shape.data(),
x_shape.size());
*x.GetTensorMutableData<int64_t>() = sos_id_;
*y.GetTensorMutableData<int64_t>() = sos_id_;
std::vector<Ort::Value> states;
states.push_back(std::move(h));
states.push_back(std::move(c));
auto pair = Rescore(std::move(x), std::move(y), std::move(states));
init_states_ = std::move(pair.second);
}
private:
OnlineLMConfig config_;
Ort::Env env_;
Ort::SessionOptions sess_opts_;
Ort::AllocatorWithDefaultOptions allocator_;
std::unique_ptr<Ort::Session> sess_;
std::vector<std::string> input_names_;
std::vector<const char *> input_names_ptr_;
std::vector<std::string> output_names_;
std::vector<const char *> output_names_ptr_;
std::vector<Ort::Value> init_states_;
int32_t rnn_num_layers_ = 2;
int32_t rnn_hidden_size_ = 512;
int32_t sos_id_ = 1;
};
OnlineRnnLM::OnlineRnnLM(const OnlineLMConfig &config)
: impl_(std::make_unique<Impl>(config)) {}
OnlineRnnLM::~OnlineRnnLM() = default;
std::vector<Ort::Value> OnlineRnnLM::GetInitStates() {
return impl_->GetInitStates();
}
std::pair<Ort::Value, std::vector<Ort::Value>> OnlineRnnLM::Rescore(
Ort::Value x, Ort::Value y, std::vector<Ort::Value> states) {
return impl_->Rescore(std::move(x), std::move(y), std::move(states));
}
} // namespace sherpa_onnx